
  

  
Abstract—In previous study, we proposed a Bayesian 

modeling technique to decompose a daily time series of Nikkei 
Stock Average (NSA) into three components which include a 
trend component, and analyzed the behavior of each estimated 
component. It was confirmed that there is time-varying 
correlation between the trend component and the coincident 
Composite Index in Japan (CIJ). In this paper, as an extension 
of the previous study we analyze the dynamic relationship 
between the trend component in the NSA and the CIJ using a 
regression model with a time-varying coefficient and a lag 
parameter. The regression model is constructed using the NSA 
as the dependent variable and the CIJ as the explanatory 
variable. Bayesian smoothness prior technique is applied to 
estimate the time-varying coefficient. Moreover, we explain the 
dynamic relationship between business cycles and stock prices 
based on the estimates of the time-varying coefficient and the 
lag parameter. As an empirical example, we analyze the daily 
time series of NSA closing values from January 4, 1991, to 
March 30, 2018, together with the monthly CIJ data over the 
same period.  
 

Index Terms—Bayesian modeling, state space model, big data 
analysis, daily stock price data, business cycles in Japan. 
 

I. INTRODUCTION 
Many economic and social events, especially, business 

cycles can drive stock prices up and down. Conversely, we 
can think of stock prices as reflecting economic and social 
changes. Thus, we can better understand the impact of 
business cycles, economic and social events by analyzing 
movements in stock prices.  From this perspective, stock 
prices data contain a lot of information about economic and 
social changes, and the ongoing streams of stock price data 
make good candidates for big data analysis. Thus, it is 
valuable to develop an approach to analyze the impact of 
economic and social changes on stock prices.  

Chen examined whether changes in the business cycle 
could be predicted using a production asset pricing model [1]. 
Wang analyzed the impact of sudden events on China's 
automobile industry stock price using the incident research 
method [2]. In [3] the impact of public announcements on 
stock prices is investigated based on the event study method. 
Abhyankar et al. examined the relationship between oil price 
shocks and the Japanese stock market, found a positive 
correlation between oil price shocks arising from changes in 
aggregate global demand and stock market returns [4]. 
However, a common shortcoming of the above studies is the 
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lack of analysis based on statistical modeling. 
Recently, approaches based on time series modeling 

through the autoregressive integrated moving average in [5] 
have been used to forecast stock prices [6], [7]. Against these 
approaches, more advanced analysis of stock prices has used 
state space modeling methods (for example, [8]). In our 
previous study [9], we analyzed Nikkei Stock Average (NSA) 
data using a novel technique in which the state space model is 
constructed by combining the seasonally adjusted model [10] 
with the time-varying coefficient autoregressive model [11]. 
The objective data analyzed in [9] are daily time series for the 
closing price from January 4, 2000, to November 28, 2017. 
First, we decomposed the time series into a long-term 
tendency (called the trend component), short-term variation 
(called the cyclical component), and error term (called the 
irregular component) using a Bayesian linear modeling 
method. The behavior of each component was then examined 
in relation to economic and social events together with 
variations in the economic and social environment.  

In our previous study [9], the trend component in the NSA 
time series was found to contain information about the 
business cycles. In [12], we analyzed the dynamic 
relationship between the NSA and the coincident Composite 
Index in Japan (CIJ), which indicates the business cycles, by 
introducing a time-varying coefficient regression method 
proposed by [13]. In this paper, as an extension of the 
previous studies [9] and [12], we analyze the dynamic 
relationship between the trend component in the NSA and the 
CIJ using a regression model, which is constructed using the 
trend in NSA as the dependent variable and the CIJ as the 
explanatory variable. This regression model is similar to that 
in the previous study [12] in terms of having a time-varying 
coefficient, but we also introduce a lag parameter to express 
the lead-lag relation between the NSA and the ICJ. Moreover, 
to obtain robust estimate of the time-varying coefficient, we 
apply the Bayesian smoothness prior technique introduced in 
[11]. The objective data are daily time series for the NSA 
closing price in the period from January 4, 1991, to March 30, 
2017 together with monthly time series data for CIJ.  

The rest of this paper is organized as follows. In Section II, 
we give a review of our previous studies in [9] and [12]. In 
Section III, we present the models and methods for parameter 
estimation. In Section IV, we analyze the estimated results. 
Finally, we offer some conclusions in Section V. 

 

II. REVIEW OF OUR PREVIOUS STUDIES 
In this section, we give a review of our previous studies [9] 

and [12].  
First, in [9] for the daily time series (in logarithmic scale) 
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ny  of the NSA, we constructed a set of statistical models as 
follows:  

 
,nnnn wrty ++=  (1) 

 
,2 121 nnnn vttt +−= −−  (2) 

 

,)( 2

q

1i
ninin vrnr += −

=
∑α  (3) 

 
where nt  and nr  are the trend and the cyclical components 

in the time series ny , respectively, nw ～ ),0(N 2σ  is the 

observation noise or irregular component, and 1nv ～

),0(N 2
1τ  together with 2nv ～ ),0(N 2

2τ  are system noises. 

It is assumed that nw , 1nv and 2nv are independent of one 

another. Also, q  represents the order of model for nr , 

)(,),(1 nn qαα 
 are coefficients that vary over time.  

When the values for the time-varying coefficients, 
)(,),(1 nn qαα 

, are given, the models in (1) - (3) form a 

set of Bayesian linear models in which the model in (1) 
defines the likelihood and the models in (2) and (3) define the 
priors for nt  and nr , respectively. More specifically, the 
model in (2) forms a second order smoothness prior for the 
trend component nt , and the model in (3) expresses an 

autoregressive (AR) model for the cyclical component nr . 
We call this set of Bayesian linear models model A.  

Features of the model A is as follows: (a) The time series 

ny  is structured into several components, so we can obtain 
various signals from the movements of each component. (b) 
The model in (2) expresses smoothness of the trend 
component over time. (c) The coefficients 

)(,),(1 nn qαα 
 in the cyclical model vary over time so 

they are called time-varying AR coefficients, thus we can 
analyze the dynamics of short-term fluctuations in the time 
series of the NSA. 

The model A can be also considered a special form of the 
seasonal adjustment models, in which a seasonal component 
is omitted and a cyclical component is added (see [14] and 
[15] for details of seasonal adjustment models). In this model, 
the trend component nt  captures the long-term tendency, the 

cyclical component nr  expresses short-term variation of the 

time series ny , and the irregular component nw  denotes an 

error term in expressing the variation of ny  by nt  and nr . 
Thus, we can search for signals of social or economic 
changes from the behavior of each component.  

There remains another problem, i.e., there are many 
unknown values for the time-varying AR coefficients, 

)(,),(1 nn qαα  , to be estimated. For the estimation of 

the time-varying coefficients, we introduced a set of first 
order smoothness priors as follows: 

 
 ),,1(,)1()( qinn niii =+−= ηαα  (4) 

 
where niη ～ ),0(N 2δ  represents system noise. We assume 

that niη  and mjη  are independent of each other for nm ≠  

or ij ≠ .  

If the values for time series of the cyclical component nr  
are given, then we can consider the cyclical model in (3) and 
the model in (4) as a set of Bayesian linear models in which 
the model in (3) defines the likelihood and the model in (4) 
plays a role of priors for the time-varying AR coefficients. 
We call a set of Bayesian linear models in (3) and (4) model 
B. Thus, the models in (1)-(4) form a set of hierarchical 
Bayesian linear models.  

In [9], the summary for model estimation was given as 
follows. The process of estimation starts by setting all values 
for the time-varying AR coefficients to zero. In the first step, 
a set of state space representations is constructed for the 
model A. So the estimates for the constant parameters q , 2σ , 

2
1τ  and 2

2τ  was obtained by the maximum likelihood 

method, and the components nt  and nr  were estimated 
using a Kalman filter and fixed-interval smoothing 
algorithms based on the state space representation. In the 
second step, another state space representation for the model 
B was constructed using the estimate for the cyclical 
component, which are obtained from the estimation of the 
model A. Then, the parameter 2δ  was estimated similarly by 
maximum likelihood method, and estimates for the AR 
time-varying coefficients, )(,),(1 nn qαα 

, are obtained 

using a Kalman filter and fixed-interval smoothing 
algorithms based on the state space representation for the 
model B. So, the process of estimation which repeated 
between the first and the second steps proceeds until the 
results converge.  

Moreover, in [12] to investigate the dynamic relationship 
between the NSA and the CIJ, we considered a regression 
model as follows:  

 
,~

nnnn exay +=  (5) 
 

where ny~  and nx are normalized time series for the NSA 

and the ICJ respectively, na  is the time-varying regression 

coefficient, and ne  is the error term which is assumed to be 
normally distributed. We applied a second order smoothness 
prior for the time-varying coefficient na  as  

 

nnnn aaa ζ+−= −− 212  (6) 
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with nζ  being the system noise which is assumed to be 

normally distributed and independent of ne .  
The models in (5) and (6) form a set of Bayesian linear 

model for the time-varying coefficient na , so it can be 
expressed in a state space representation. Thus, the Kalman 
filter algorithm can be used for parameter estimation (See [12] 
for the details).  
 

III. MODELS AND PARAMETER ESTIMATION 

A. Models 
Following the methodology introduced in [12], we analyze 

the dynamic relationship between the trend component in the 
NSA and the CIJ based on the results that are obtained by use 
of the method in [9]. For necessity of modeling, we arrange 
monthly time series for the CIJ into a form of daily time 
series. Let },,2,1;~{ Mmxm =  be a set of monthly time 

series data for the CIJ with M  being the length. To make a 
one-to-one correspondence with },,2,1;ˆ{ Nntn = , 
which denotes a set of estimates for daily time series of the 
trend component in the CIJ, with N  being the length of the 
time series ny . We expand the set  },,2,1;~{ Mmxm =  

into a set of daily time series data },,2,1;{ * Nnxn =  by 

setting mn xx ~* =  if and only if the n -th day is in the m -th 

month for Nn ,,2,1 =  and Mm ,,2,1 = .  
Let t  be the average of the elements in the set 

},,2,1;ˆ{ Nntn = , x  and s  be the average and the 
standard deviation of the elements in the set 

},,2,1;{ * Nnxn =  respectively.  Then, we transform the 

data },,2,1;{ * Nnxn =  into },,2,1;{ Nnxn =  by  
 

s
xxx n

n
−

=
*

, 

 
and transform the data },,2,1;ˆ{ Nnt =  into 

},,2,1;{ * Nnyn =  by  
 

tty nn −= ˆ* . 
 
To analyze the dynamic relationship between the trend of 

the NSA and the ICJ, we introduce a dynamic regression 
model as follows:  

 

,*
nLnnn xy εβ += +  (7) 

 
where nβ  is the time-varying coefficient that comprises a 

daily time series, and L  denotes a lag parameter, nε ～

),0(N 2λ  is the observation noise with 2λ  being the 

unknown variance.  
The lag L  and the time-varying coefficient nβ  are two 

important parameters. From the value of L  we can see the 
lead-lag relationship between the NSA and the CIJ in which 
the case where 0>L  implies that the CIJ lags the NSA and 
the case where 0<L  implies that the CIJ precedes NSA. 
Moreover, from the estimate of the time-varying coefficient 

nβ  we can examine the dynamic relationship between the 
NSA and the CIJ. 

Moreover, similarly to the treatment for the time-varying 
coefficient na , we introduce a second order  smoothness 

prior for the time-varying dependence coefficient nβ as 
follows: 

 
.2 21 nnnn ψβββ +−= −−  (8) 

 
Here, nψ ～ ),0(N 2φ  represents system noise, where  

2φ  denotes the unknown variance. It is assumed that nψ  is 

independent of nε . 

B. Estimating Time-Varying Coefficient 
If we set 
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then, the models in (7) and (8) can be expressed by a state 
space representation as 

 
   𝒛𝑛 = 𝑭𝒛𝑛−1 + 𝑮 ,nψ  (9) 

 
      𝑦𝑛∗ = 𝑯𝑛𝒛𝑛 + 𝜀𝑛 . (10) 

 
In the state space representation comprising (9) and (10), 

the time-varying coefficient nβ  is included in the state 

vector 𝒛𝑛. So, the estimate for nβ  can be obtained from the 
estimate of 𝒛𝑛. Moreover, the parameters,  𝜆2 and 𝜙2, which 
are called hyperparameters, can be estimated using the 
maximum likelihood method. 

Let  𝒛0  denote the initial value of the state and let 𝑌1
(𝑘) 

denote a set of estimates for 𝑦𝑛∗ up to the k-th day. Assume 
that 𝒛0~N�𝒛0|0,𝑪0|0�.  Because the distribution density  
𝑓(𝒛𝑛| 𝑌1

(𝑘)) for the state 𝒛𝑛 conditional on  𝑌1
(𝑘) is Gaussian, 

it is only necessary to obtain the mean 𝒛𝑛|𝑘  and the 
covariance matrix 𝑪𝑛|𝑘 of 𝒛𝑛 with respect to  𝑓(𝒛𝑛� 𝑌1

(𝑘)�. 
Given the values of  L , 𝜆2 and 𝜙2,  the initial distribution 

N�𝒛0|0,𝑪0|0�, and a set of estimates for 𝑦𝑛∗ up to time point 𝑁, 
the means and covariance matrices in the predictive 
distribution and filter distribution for the state 𝒛𝑛  can be 
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obtained using the Kalman filter for 𝑛 = 1,2,⋯ ,𝑁 (see for 
example, [15], [16]): 

 
[Prediction] 
 

              𝒛𝑛|𝑛−1 = 𝑭𝒛𝑛−1|𝑛−1, 
 

             𝑪𝑛|𝑛−1 = 𝑭𝑪𝑛−1|𝑛−1𝑭𝐭  + 𝑮𝑸𝑮𝐭. 
 
 [Filter] 
 

      𝑲𝑛 = 𝑪𝑛−1|𝑛−1𝑯𝑛
𝐭 �𝑯𝑛𝑪𝑛−1|𝑛−1𝑯𝒏

𝐭 + 𝜆2 �−1, 
 

 𝒛𝑛|𝑛 = 𝒛𝑛|𝑛−1 + 𝑲𝑛�𝑦𝑛∗ − 𝑯𝑛𝒛𝑛|𝑛−1�, 
 

   𝑪𝑛|𝑛 = (𝑰 − 𝑲𝑛𝑯𝑛)𝑪𝑛|𝑛−1. 
 
Based on the results of the Kalman filter, we can obtain the 

final estimate for 𝒛𝑛 using the fixed-interval smoothing for 
𝑛 =  𝑁 − 1, 𝑁 − 2, ⋯ , 1 as follows: 

 
[Fixed-Interval Smoothing] 
 

                      𝑨𝑛 = 𝑪𝑛|𝑛𝑭𝐭𝑪𝑛+1|𝑛
−1 , 

 
𝒛𝑛|𝑁 = 𝒛𝑛|𝑛 + 𝑨𝑛�𝒛𝑛+1|𝑁 − 𝒛𝑛+1|𝑛�, 

 
        𝑪𝑛|𝑁 = 𝑪𝑛|𝑛 + 𝑨𝑛�𝑪𝑛+1|𝑁 − 𝑪𝑛+1|𝑛�𝑨𝑛𝐭 . 

 
Then, the posterior distribution of 𝒛𝑛 is given by 𝒛𝑛|𝑁 and 

𝑪𝑛|𝑁.  Subsequently, the estimate nβ̂  for the time-varying 

coefficient nβ  can be obtained because the state space 

representation described by (9) and (10) incorporates nβ  in 
the state vector 𝒛𝑛. 

   Incidentally, from (7) the predicted value *ˆny  of *
ny  can 

be calculate as follows:  
 

Lnnn xy += β̂ˆ*  (11) 
 

C. Estimating Hyperparameters 

Given the time series data  𝑌1
(𝑁) = {𝑦1∗, 𝑦2∗, ⋯ , 𝑦𝑁∗ }  and 

the corresponding time series data {𝑥1,  𝑥2, ⋯ ,   𝑥𝑁},   a 
likelihood function for the hyperparameters 𝜆2 and 𝜙2  and 
the parameter L  is given by: 

 

𝑓�𝑌1
(𝑁)�𝜆2,𝜙2, 𝐿� = �𝑓𝑛(𝑦𝑛∗|𝜆2,𝜙2, 𝐿),

𝑁

𝑛=1

      

 
where 𝑓𝑛(𝑦𝑛∗|𝜆2,𝜙2, 𝐿)  is the density function of 𝑦𝑛∗.  By 
taking the logarithm of 𝑓�𝑌1

(𝑁)�𝜆2,𝜙2, 𝐿�, the log-likelihood 
is defined as 

 
𝑙(𝜆2,𝜙2, 𝐿) = log𝑓�𝑌1

(𝑁)�𝜆2,𝜙2, 𝐿�  
                      =  ∑ log𝑓𝑛(𝑦𝑛∗|𝜆2,𝜙2, 𝐿)𝑁

𝑛=1 .       (12) 

Following [15], using the Kalman filter, the density 
function  𝑓𝑛(𝑦𝑛∗|𝜆2,𝜙2, 𝐿)  is a normal density given by: 

 

𝑓𝑛(𝑦𝑛∗|𝜆2,𝜙2, 𝐿) =
1

�2𝜋𝑤𝑛|𝑛−1
 

× exp �− �𝑦𝑛∗−𝑦𝑛|𝑛−1�
2

2𝑤𝑛|𝑛−1
�, (13) 

 
where 𝑦𝑛|𝑛−1 is the one-step-ahead prediction for  𝑦𝑛∗   and 
𝑤𝑛|𝑛−1 is the variance of the predictive error, respectively 
given by 

 
  𝑦𝑛|𝑛−1 = 𝑯𝑛𝒛𝑛|𝑛−1, 

 
𝑤𝑛|𝑛−1 = 𝑯𝑛𝑪𝑛|𝑛−1𝑯𝒏

𝐭 + 𝜆2. 
 
Moreover, for a fixed value of 𝐿 , the estimates of the 

hyperparameters can be obtained using the maximum 
likelihood method, i.e., we can estimate the hyperparameters 
by maximizing the log-likelihood 𝑙(𝜆2,𝜙2, 𝐿)  in (12) 
together with (13). In practice, when we substitute the new  
𝜆2 = 1  into the Kalman filter algorithm outlined above, the 
estimate �̂�2 for 𝜆2 is obtained analytically by 

 

�̂�2 = 1
𝑁
∑ �𝑦𝑛∗−𝑦𝑛|𝑛−1�

2

𝑤𝑛|𝑛−1

𝑁
𝑛=1 . (14) 

 
Thus, an estimate 𝜙�2  for 𝜙2  can be obtained by 

maximizing the log-likelihood 𝑙(�̂�2,𝜙2, 𝐿)  using (12) 
together with (14). 

Information about the value of lag 𝐿  is important for 
analyzing the lead-lag relationship between the NSA and the 
CIJ, and can be obtained from the maximum value of the 

marginal log-likelihood ),ˆ,ˆ( 22 Ll φλ .  
 

IV. RESULTS AND ANALYSIS 
Here, we use data on the closing values of the NSA as the 

object for the analysis. We analyze daily time series data 
covering the period from January 4, 1991 to March 30, 2018, 
which were obtained from the website of Yahoo Japan 
(http://info.finance.yahoo.co.jp/). Thus, we have .9948=N  
Every day is included in the period of analysis; the values of 
the NSA on weekends and holidays are treated as missing 
values. We also use the data for the CIJ time series covering 
the same period (the CIJ data were supplied by the Cabinet 
Office, Government of Japan: 
(http://www.esri.cao.go.jp/jp/stat/di/di.html).  

 

 
Fig. 1. Original time series data for the NSA. 
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Fig. 2. Expanded original time series data for the CIJ. 

 
Fig. 1 shows the original time series data for the NSA, and 

Fig. 2 shows the expanded original time series data for the 
CIJ.  

From Fig. 1 and Fig. 2, we can see that the overall behavior 
of the NSA time series is very similar to that of the CIJ time 
series, but the similarity between the movements of these two 
time series differs in each short period. Broadly speaking, 
there may be a high degree of correlation between the two 
time series, but the pattern of the relationship changes over 
time. Thus, the relationship between the NSA and CIJ time 
series varies with time, and it is very interesting to analyze 
the dynamic relationship between the NSA and the CIJ.  

Fig. 3 shows the time series of the estimates for the trend 
component in the NSA. From this figure, we see that the 
estimate for the trend component is smoother than the 
original time series but shows periodic movement with 
irregular cycles. We expected that the periodic movements 
might express natural business cycles, which prompted us to 
analyze the relationship between the estimate of the trend 
component and the CIJ, a Japanese business cycle index.  

 

 
Fig. 3. Time series of the estimate for the trend component in the NSA. 
 
The order of the AR model in (3) is determined as 2=q

based on the method of maximum likelihood. Fig. 4 shows 
the estimates for the time-varying AR coefficients (a) )(1 nα  
and (b) )(2 nα  in the cyclical model, in which the behavior of 
the coefficients expresses structural change in the 
self-correlation of the cyclical component.  

From Fig. 4, we can see, for example, an extreme 
fluctuation around October, 2008, which occurred shortly 
after the bankruptcy declaration of Lehman Brothers, and so 
on. 

We give below the estimation results for the time-varying 
coefficient regression models in (7) and (8) obtained based on 
the estimates for the trend component in the NSA and data of 
the CIJ. We use a part of the estimates for the trend 
component in the period from October 1, 1992 to March 30, 
2017 in order to ensure necessary values for the lag L . Thus, 
we have 9312=N  for the analysis below.  

First, to determine the value of the lag L , we practice 

related calculation for each value of L  on the interval from 
600−  to 200− . Fig. 5 shows the distribution of marginal 

log-likelihood on this interval of the lag. The maximum value 
of the marginal log-likelihood is 48.7732 , which is attained 
at 457−=L . That is, the movement of the CIJ precedes that 
of NSA, it implies that the stock prices are as the effects of 
business cycles.  

 

 
Fig. 4. (a) Time series of the estimate for alpha_1(n). 

 

 
Fig. 4. (b) Time series of the estimate for alpha_2(n). 

 

 
Fig. 5. Distribution of marginal log-likelihood on the lag. 

 

 
Fig. 6. Time series of estimated mean for the time-varying coefficient  
 
Fig. 6 shows the estimated mean of the time-varying 

coefficient nβ . In this figure, the vertical lines indicate the 
turning points in the business cycles (the red and black lines 
indicate peaks and troughs, respectively). From Fig. 6, it can 
be seen that the mean of the coefficient varies smoothly over 
time, but contains a rapid change in each phase of the 
business cycle. Moreover, we can see that the sign of the 
time-varying coefficient switches at each point of this rapid 
change. In the recession phase, which corresponds to the 
period from a peak to the next trough in the business cycle, 

70

80

90

100

110

120

130

1991/01/04 1995/02/12 1999/03/23 2003/05/01 2007/06/09 2011/07/18 2015/08/26
time (daily)

International Journal of Trade, Economics and Finance, Vol. 9, No. 6, December 2018

228



  

the time-varying coefficient turns from positive to negative 
with a rapid change point at the boundary; similarly, in the 
expansion phase, which corresponds to the period from a 
trough to the next peak in the business cycle, the time-varying 
coefficient turns from negative to positive.  

 

 
Fig. 7. (a) Scatter diagram from Oct. 1, 1992 to Oct. 14, 1993. 

 

 
Fig. 7. (b) Scatter diagram from Oct. 15, 1993 to Jan. 14, 1999. 

 

 
Fig. 7. (c) Scatter diagram from Jan. 15, 1999 to Jan. 14, 2002. 

 
To understand the dynamic relationship between the NSA 

and the CIJ more readily, we indicate the dynamic 
relationship between the normalized CIJ and the predicted 
trend of NSA, which is obtained using (11), by line graph of 
scatter diagram. Fig. 7 shows the scatter diagrams for each 
business cycle in Japan: (a) latter period of the eleventh cycle 
(from Oct. 1, 1992 to Oct. 14, 1993), (b) the twelfth cycle 
(from Oct. 15, 1993 to Jan. 14, 1999), (c) the thirteenth cycle 

(from Jan. 15, 1999 to Jan. 14, 2002), (d) the fourteenth cycle 
(from Jan. 15, 2002 to Mar. 14, 2009), (e) the fifteenth cycle 
(from Mar. 15, 2009 to Nov. 14, 2012), (f) previous period of 
the sixteenth cycle (from Nov. 15, 2012 to Mac. 30, 2017). 
Note that in each cycle, route of the scatter diagram starts 
from the point A, and reaches point C via point B. 

From Fig. 7, it can be seen that in almost panels each route 
of the scatter diagram forms an irregular ellipse except the 
panels (a) and (f) which show only a part of business cycle 
respectively.  

 

 
Fig. 7. (d) Scatter diagram from Jan. 15, 2002 to Mar. 14, 2009. 

 

 
Fig. 7. (e) Scatter diagram from Mar. 15, 2009 to Nov. 14, 2012. 

 

 
Fig. 7. (f) Scatter diagram from Nov. 15, 2012 to Mar. 30, 2017. 

 

V. CONCLUSION 
In this paper, we expanded our previous researches for 

-0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.4 0 0.4 0.8 1.2 1.6

pr
ed

ic
te

d 
tr

en
d 

of
 N

SA

normalized CIJ

A

B

C

-0.1

0

0.1

0.2

0.3

0.4

0.5

-2.2 -1.7 -1.2 -0.7 -0.2 0.3 0.8

pr
ed

ic
te

d 
tr

en
d 

of
 N

SA

normalized CIJ

A

B

C

-0.6

-0.4

-0.2

0

0.2

0.4

-1.4 -1 -0.6 -0.2 0.2 0.6

pr
ed

ic
te

d 
tr

en
d 

of
 N

SA

normalized CIJ

C

B

A

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-1.5 -1 -0.5 0 0.5 1 1.5 2
pr

ed
ic

te
d 

tr
en

d 
of

 N
SA

normalized CIJ

A

B C

-0.8

-0.6

-0.4

-0.2

0

0.2

-3.5 -2.5 -1.5 -0.5 0.5 1.5

pr
ed

ic
te

d 
tr

en
d 

of
 N

SA

normalized CIJ

A

B

C

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.4 0 0.4 0.8 1.2 1.6

pr
ed

ic
te

d 
tr

en
d 

of
 N

SA

normalized CIJ

A

B

C

International Journal of Trade, Economics and Finance, Vol. 9, No. 6, December 2018

229



  

analyzing the dynamic relationship between stock prices and 
business cycles using Bayesian modeling techniques. First, 
we described a process for decomposing the daily time series 
of Nikkei Stock Average (NSA) into a trend component, a 
cyclical component, and an irregular component. Then, we 
analyzed the dynamic relationship between the estimated 
trend component in NSA and the coincident Composite Index 
in Japan (CIJ) by constructing a regression model with 
time-varying coefficient. In the regression model, we 
employed the NSA as the dependent variable, and used the 
lagged CIJ as the explanatory variable. Bayesian smoothness 
prior technique is applied to estimate the time-varying 
coefficient. As an empirical study, we analyzed the daily time 
series for the closing price of the NSA from January 4, 1991 
to March 30, 2017, it yielded the following results:  
1) The CIJ precedes NSA in 457 days (almost one and a 

half years), it implies that the stock prices are as the 
effects of business cycles.  

2) The mean of the coefficient generally varies smoothly 
over time, but exhibits rapid changes in each phase of the 
business cycle. The sign of the time-varying coefficient 
switches when such a rapid change occurs.  

3) In the recession phase, the time-varying coefficient turns 
from positive to negative, and in the expansion phase, 
the time-varying coefficient turns from negative to 
positive, with a point of rapid change at the boundary.  

4) In almost business cycles routes of the scatter diagram 
between CIJ and the predicted trend of NSA form 
irregular ellipses.  
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