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Abstract—Statistical arbitrage covers a variety of trading 

strategies that are based on statistical modelling and are usually 

characterized by a near market-neutral trading book. Statistical 

arbitrage strategies are generally used by hedge funds and retail 

traders with the objective of achieving excess returns regardless 

of the market regime. In this study we examine the performance 

of two statistical arbitrage systems in developed markets 

(Germany, Japan and the United States) and emerging markets 

(China and South Africa) over the period of 2006 to 2016. We 

investigate whether the performance of these systems are 

affected by different market regimes and whether excess returns 

have been altered since the financial crisis in 2008-2009. We also 

compare the performance of these systems in developed and 

emerging markets. Our results indicate that statistical arbitrage 

systems produce higher excess returns during non-trending 

markets and that these systems generally provide higher returns 

in emerging markets. The overall performance of the statistical 

arbitrage systems have weakened since the financial crisis, but a 

noticeable improvement in excess returns produced is apparent 

in the last three years of our study. 

 
Index Terms—Financial modelling, statistical arbitrage, 

algorithmic trading, pairs trading.  

 

I. INTRODUCTION 

Background 

In finance, arbitrage is the practice of exploiting a 

difference in price between two or more markets. The 

execution of arbitrage relies on the placement of a 

combination of trades that capitalizes on the difference 

between market prices. An arbitrage can be considered a 

transaction that does not involve negative cash flow at any 

temporal or probabilistic state and a positive cash flow in at 

least one of these states. Arbitrage in theory is very intriguing 

as it can provide a risk-free profit at zero cost. 

In finance, statistical arbitrage covers a variety of trading 

strategies that are based on statistical modelling. These 

strategies are characterized by a degree of market neutrality 

such that an investment portfolio based on statistical arbitrage 

is only slightly affected by movements in the overall financial 

market [1]. These strategies thus aim to provide excess returns 

above the market index return (alpha) while simultaneously 

achieving these profits at lower volatility than the market 

index (beta). Many statistical arbitrage strategies are based on 

the concept of mean-reversion in the price series of financial 
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securities. Typical forms of statistical arbitrage include pairs 

trading and general long/short strategies. Statistical arbitrage 

is often employed by hedge funds to produce low volatility 

investment strategies that inherently take advantage of 

diversification across assets.  

There is no single definition of high frequency trading 

(HFT), but it is generally described as a form of algorithmic 

and quantitative trading that is characterized by short holding 

periods and high order-to-trade ratios. This type of trading is 

made possible with the availability of high frequency 

financial data and generally relies on the use of sophisticated 

mathematical models and computing methods. High 

frequency traders move in and out of short-term positions at 

high volumes to capture small profits which may exist 

because of inefficiencies in the financial markets. HFT 

strategies generally do not allow for holding positions over 

night. The potential of achieving low volatility and high 

excess returns offered by this type of trading, makes it an 

attractive approach to traders and investors [2]. Some 

literature however argues that HFT and electronic trading 

pose new challenges to the financial system and that these 

methods lead to an increase in market volatility [3].  

In this paper we investigate a novel form of statistical 

arbitrage that combines the formation of artificially created 

mean reverting instruments, based on baskets of securities 

selected through clustering techniques, with dynamic 

thresholds for entering trades. 

 

II. LITERATURE REVIEW 

A. Efficient Market Hypothesis 

The efficient market hypothesis (EMH) was introduced by 

Fama in the 1970’s [4]. Fama hypothesized that markets are 

efficient as news spreads quickly, without delay, to be 

reflected in the prices of financial securities. If the efficient 

market hypothesis holds true, an investor cannot – using any 

techniques – pick certain securities that would allow for 

greater returns than would be achieved by randomly selecting 

a portfolio of individual securities that exhibits comparable 

risk. The efficient market hypothesis is consequently 

associated with the concept of a random walk model. Random 

walk models are used to describe price series where each 

subsequent price change represents a random change from the 

preceding price change. 

Some studies suggest that the prices of securities are at least 

partially predictable. Malkiel [5] argues that markets cannot 

be completely efficient as the collective judgment of investors 

are fundamentally bound to make mistakes. Malkiel further 

states that it can be expected for some market participants to 
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act irrationally at times. The study by Malkiel suggests that 

markets are not entirely efficient, but that efficiency has 

improved noticeably over time.  

Grossman and Stiglitz [6] argue that if markets are 

perfectly efficient, there will be no incentive for professionals 

to uncover information that gets rapidly reflected in stock 

market prices. 

A large number of empirical studies conclude that security 

prices contradict the efficient market hypothesis. Jegadeesh 

and Titman [7] examined a trading strategy in 1993 that buys 

well-performing stocks and sells poor-performing stocks. The 

results conclude that the strategy was able to achieve excess 

returns of up to 12% above the returns provided by the 

standard capital asset pricing model (CAPM).  

A study by Chan, Jegadeesh and Lakonishok [8] in 1996 

investigated the predictability of future returns by examining 

past returns. The study suggests that there is little evidence of 

subsequent reversals in the returns of stocks that exhibit high 

price and earnings momentum. Chan, Jegadeesh and 

Lakonishok argue that markets only gradually respond to new 

information. 

Dunis and Ho [9] examined long-short market neutral 

strategies on the Dow Jones EUROStoxx 50 index from 

Januray 2002 to June 2003. The results suggest that market 

neutral strategies can generate steady returns under adverse 

market circumstances. 

Nobrega and Oliveira [10] investigated the effect of 

various machine learning models on statistical arbitrage in 

2013. The results suggest that some of the models examined 

were significantly profitable such as the extreme learning 

machine which was able to achieve an average annual return 

of 23.58% in out-of-sample data.    

B. Established Models for Statistical Arbitrage 

Due to the nature of trading strategies, it can be assumed 

that many statistical arbitrage techniques are not in the public 

domain. A number of approaches have however been 

documented in academic literature, some of which will now 

be discussed. 

C. Minimum Distance Method 

Gatev, Goetzmann and Rouwenhorst [11] examined and 

documented the minimum distance method. The application 

of this method consists of two distinguishable periods: a pair 

formation period and a trading period. The length of these 

periods are essentially free parameters and Gatev, Goetzmann 

and Rouwenhorst mention that the decision to choose a 12 

months formation period and a 6 months trading period in 

their study, was arbitrary. 

During the formation period, pairs of securities are chosen 

such that the sum of squared deviations (Euclidean distance) 

between the two normalized price series are minimized. Gatev, 

Goetzmann and Rouwenhorst placed the restriction on pairs 

that securities belonging to a pair must be from the same stock 

market sector. Once pairs have been created from the given 

security universe, a selection of the pairs with the minimum 

squared distance is chosen. The standard deviation of the 

spread of each of the selected pairs is calculated over the 

formation period.  

During the trading period, a simple standard 

deviation-based trading strategy is executed. A long position 

is taken in the lower-priced security and a short position is 

taken in the higher priced security when the spread of the 

normalized prices have diverged by more than two standard 

deviations. The long and short positions are opened with 

equal monetary value. The positions are closed when the 

prices cross. When the trading period ends, all positions are 

closed regardless of whether prices have converged or not.  

D. Arbitrage Pricing Theory 

Vidyamuthy [12] suggested a method of detecting potential 

pairs by making use of arbitrage pricing theory (APT) which 

was first suggested by Ross [13] to determine asset prices. By 

making the assumptions that the law of one price holds and 

market participants have homogenous expectations, the return 

on any financial security is linearly related to a set of risk 

factors: 

*
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where 
,i j   is the risk exposure of asset i   to risk factor j , 

*

jr  is the return contribution of risk factor j   and fr  is the 

risk-free return. The residual, i , can be interpreted as the 

return component arising from the idiosyncratic or specific 

risk of asset i . The expected value of i  should be zero. This 

model has two constraints: 
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The paper by Ross [13] can be consulted for more details 

regarding arbitrage pricing theory. With a focus on statistical 

arbitrage, the assumption is made that securities with virtually 

identical risk exposures should yield approximately equal 

returns. Thus it may be possible to detect tradable pairs by 

investigating the risk exposure of the securities to particular 

risk factors. 

It is up to the practitioner to determine the risk factors that 

should be considered and how a trading strategy based on this 

concept should be executed as Vidyamurthy [12] does not 

provide this information. This model based on APT has the 

clear objective of finding mispricings in pairs of relatable 

securities. It is built on the notion of a well-known pricing 

theory that is supported by fundamental economic reasoning. 

E. Cointegration Method 

In contrast to the minimum distance method which made no 

model assumptions, the cointegration method for statistical 

arbitrage is a model-based parametric approach. The notion 

of this approach is that if two financial securities follow a 

common stochastic trend, the spread between the price series 

of the securities may be weakly stationary. More formally, if 

two securities’ price series are both integrated of order d and 

there exists is a linear combination of the two price series that 

will be integrated of order d - b (b > 0), then the two price 

series are considered cointegrated (CI(d, b)). 

With the objective of performing statistical arbitrage, 
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interest is placed on the situations where d – b = 0 such that 

there exists a stationary time series for the spread. Since a 

significant number of price series are integrated of order one, 

I(1), focus can be placed more specifically on the situations 

where b = d = 1.  

An advantage of cointegrated price series is that the series 

can be represented by an error correction model (ECM). In an 

ECM, the dynamics of a time series at a particular point in 

time is a correction of the preceding period’s deviation from 

the equilibrium with the addition of possible lag dynamics. 

Harlacher [14] expresses the cointegrated relation between 

two time series 
tX  and 

tY  as: 
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where ,y t  and 
,x t  depict white noise, 

ty  and 
tx  depict 

one period differences in 
ty  and 

tx  respectively and the 

terms  ,   and   represent the OLS estimates of the 

cointegrating regression that relates the time series. In the 

case that no deterministic trend is present in the series, the 

constants   and   are zero. The main advantage of the ECM 

representation of this system is that active forecasts can be 

done by simply using past information. From equations (2) 

and (3) it can be seen that the part that represents the deviation 

from the long run equilibrium is 
1 1t ty x    . This term 

must be weakly stationary and the two coefficients 
y  and 

x  

must have opposite algebraic signs. If these conditions did not 

hold true, no error-correcting behavior would be present. The 

presence of this phenomenon and of cointegration in general 

can be tested for by using the procedure set out by Engle and 

Granger [15] or the more generalized approach of Johansen 

[16]. 

From a trading perspective, it is not necessary that a spread 

series is weakly stationary. The spread only needs to be 

mean-reverting in nature for an effective trading rule to be 

implementable. This model is not limited to trading only pairs 

of securities, but can be generalized to more securities where 

a possible mean-reverting equilibrium can exist. 

F. Previous Documented Performance of Statistical 

Arbitrage Models 

Gatev, Goetzmann and Rouwenhorst [11] tested the 

minimum distance method (referred to as pairs trading) on the 

US stock market using daily data over the period of 

1962-2002. They documented average annualized returns of 

up to 11% for self-financing portfolios of stock pairs. They 

argue that the robustness of the excess returns indicate that the 

minimum distance approach to statistical arbitrage profits 

from temporary mispricing of close substitutes. 

Caldeira and Moura [17] investigated the selection of a 

portfolio of pairs based on the cointegration approach to 

statistical arbitrage on the São Paulo Stock Exchange. Their 

study used daily data from the exchange over the period of 

January 2005 to October 2012. Empirical analysis showed 

that their approach delivered excess returns of up to 16.38% 

per year, having a Sharpe ratio of 1.34 and low correlation to 

the market. Their study considered transaction costs of 0.5% 

of each trade value (one-way). 

Avellaneda and Lee [18] studied model-driven statistical 

arbitrage strategies in the US equity market over the period of 

1997-2007. Their models consisted of an approach based on 

principle component analysis (PCA) and sector ETFs. Their 

market-neutral PCA-based strategy achieved an annual 

Sharpe ratio of 1.44 over the entire period. They also 

document that the strategy performance degraded over the 

time frame, having had an average Sharpe ratio of 0.9 over the 

period of 2003-2007. 

Cummins [19] tested the minimum distance method for 

statistical arbitrage on equity markets in the United States, 

Japan, Hong Kong and China by using daily data over the 

period of January 2004 to December 2009. The results 

conclude that the algorithm does not yield consistent positive 

excess returns throughout time nor in different markets. The 

results were different for each of the markets examined in 

terms of profitability and portfolio volatility. According to 

Cummins the algorithm did prove to be extremely profitable 

during periods of stock market turmoil.  

 

III. METHODOLOGY AND DATA 

A. Description of Data 

The financial data that was available for this study includes 

several security universes that consist of stocks and 

exchange-traded funds (ETFs). The data was provided in the 

form of price bars that include the daily opening, high, low 

and closing price of each security. The volume that was traded 

for each security was also provided. Data was not available 

for financial securities that have been delisted from the 

respective exchanges; this may cause some survivorship bias 

in the results. The period that will be examined ranges from 1 

January 2006 to 30 June 2016. The security universes 

included in this study represent all tradable securities from the 

following exchanges: 

1) New York Stock Exchange and NASDAQ (US) 

2) Deutsche Börse Xetra (DE) 

3) Tokyo Stock Exchange (JP) 

4) Johannesburg Stock Exchange (SA) 

5) Hong Kong Stock Exchange (CH) 

B. Methodology  

As a means of studying statistical arbitrage strategies, two 

trading systems will be studied. The first system is built on the 

minimum-distance approach that was studied by Gatev, 

Goetzmann and Rouwenhorst [11], which we will refer to as 

the pairs trading system. The second system follows a 

cointegration approach and is referred to as the adaptive 

statistical arbitrage system. Consult [20] for more details on 

the adaptive statistical arbitrage system. 

International Journal of Trade, Economics and Finance, Vol. 8, No. 2, April 2017

69



  

The systems were set up using the baseline parameters that 

were chosen by Gatev, Goetzmann and Rouwenhorst to allow 

for a direct comparison of the results. 

In this section we briefly explain our approach by 

reviewing the implementation details of the statistical 

arbitrage systems that will be examined. The default 

parameters are listed at the end of the system review. We also 

discuss the details regarding the simulation (or backtesting) 

environment. 

C. Pairs Trading System 

Similar to the approach by Gatev, Goetzmann and 

Rouwenhorst [11], the pairs trading system distinguishes 

between two periods, namely a formation period and a trading 

period.  

In the formation period the squared error (SE) of all the 

normalized price series are calculated. The system ranks pairs 

of securities by prioritizing smaller SE values over larger SE 

values. This is done since similar securities are searched for 

by using only price data. A relatively small SE value 

corresponds to very similar price series. Pairs of securities are 

selected from the ranked SE values. It should be noted that 

each security is only paired at its lowest SE value with another 

security. The spread of each pair is calculated as: 

t
xy

t

x
s

y
           (4) 

where xys  is the spread of the one period returns of the 

dividend-adjusted closing price series of securities 
tx  and 

ty . 

The average price of the spread (
s ) and the standard 

deviation of the spread (
s ) are calculated for each of the pair 

spreads. 

During the trading period, the spread value is calculated 

daily and a z-score (which indicates how many standard 

deviations an element is from the mean) is calculated with 

regards to the average price and standard deviation of the 

spread that was calculated in the formation period. If the 

z-score is higher or lower than a certain threshold value, a 

market position is taken such that one security is bought and 

the other is sold short. The monetary value of the bought and 

sold securities should be equal for the system to remain 

market-neutral. When the spread of the returns has converged 

back to the average value (
x ), the z-score will have a value 

of zero and the pair position is closed. When the trading 

period ends all positions are closed regardless of whether the 

spreads have converged. The system then reverts back to the 

formation period. 

D. Adaptive Statistical Arbitrage System 

The adaptive statistical arbitrage system is built on the 

notion of the cointegration of security prices. This allows the 

system to trade baskets of related securities rather than only 

pairs. Similarly to the pairs trading system, the adaptive 

system also alternates between two periods. The first period is 

referred to as the learning period and the second as the trading 

period. 

During the learning period the affinity propagation 

clustering technique is applied to the security universe. The 

clustering of the universe allows for groups of related 

securities to be extracted and thus avoids having to perform 

statistical tests on all possible combinations of securities. The 

clustering is performed by constructing a similarity function 

that quantifies the similarity between securities using 

correlation and squared error. Clusters that consist of more 

than twelve securities are split until all clusters contain less 

than thirteen securities. This is done to allow for the baskets to 

be tested by the Johansen cointegration method which only 

allows for up to twelve securities to be tested at one time. 

When the Johansen cointegration test is applied to the 

clusters, it is possible to search for related securities and 

construct (weakly) stationary series when cointegration is 

found. The stationary series are obtained by linearly 

weighting the securities in the basket according to the largest 

resulting eigenvector of the Johansen method. We limit the 

creation of these weakly stationary series to instances where 

the test indicates at least a 95% certainty of cointegration 

between the securities. Baskets of securities that have passed 

the test for cointegration are ranked (in ascending order) 

according to the variance of the stationary series. 

A GARCH(1,1) model is constructed using a student-t 

likelihood function with the objective of modelling the 

volatility of the weakly stationary series. The objective of the 

GARCH model is to dynamically update market entry 

thresholds by increasing or decreasing the threshold when 

volatility increases or decreases. 

During the trading period, the value of each (weakly) 

stationary series that has been constructed is calculated. 

Similarly to the pairs trading system, a z-score is calculated 

for each of the stationary series. This z-score is compared to 

the threshold for market entry. When the z-score is larger than 

the positive threshold value, the stationary series is effectively 

sold short. When the z-score is smaller than the negative 

threshold value, the stationary series is effectively bought. 

The baseline parameters for this system are depicted in Table 

I.  
 

TABLE I: BASELINE PARAMETERS OF SYSTEMS 

Parameter 
Pairs trading 

system 

Adaptive statistical 

arbitrage system 

Formation/learning period 1 year 1 year 

Trading period 1 semester 1 semester 

Max amount of 

pairs/baskets to trade  
5 pairs 5 baskets 

Entry threshold 
±2.0 standard 

deviations 

Initially 1.5 standard 

deviations (GARCH 

updated thereafter) 

 

E. Backtest Setup 

The initial capital that will be considered for each backtest 

is 100,000 currency units. The currency unit is reliant on the 

market that is being examined. A default transaction fee of 

0.3% plus an additional 0.1% of the trade value is taken into 

account to allow for rental costs of short positions. Orders are 

placed (and executed) at the next market opening price after 

having generated a trading signal. Only 85% of the capital is 

made available for all active trades to allow for possible 

margin requirements.  
 

IV. HYPOTHESES 

This study tests three hypotheses concerning statistical 

International Journal of Trade, Economics and Finance, Vol. 8, No. 2, April 2017

70



  

arbitrage performance on different markets during different 

market regimes. The hypotheses are defined as follows: 

1) Hypothesis 1: The returns produced by statistical 

arbitrage models is larger for emerging markets than for 

developed markets. 

2) Hypothesis 2: Statistical arbitrage excess returns have 

decreased since the financial crisis of 2008-2009. 

3) Hypothesis 3: Statistical arbitrage strategies produce 

larger excess returns during non-trending/bearish market 

regimes than during bullish market regimes.   
 

V. EMPIRICAL  

In order to test hypothesis 1, the two statistical arbitrage 

models were backtested on the different security universes. 

The main statistic that is of concern for testing this hypothesis 

is the compound annual growth rate (CAGR). The CAGR of 

the statistical arbitrage systems that were obtained from the 

backtest results of the developed markets are  compared to the 

CAGR of the systems tested on the emerging markets. 

Table II contains the CAGR of each statistical arbitrage 

system with regards to the different security universes that 

were examined. For markets that have more than 200 

exchange traded funds (ETFs) available, the system results 

are shown for both a stock-only universe and an ETF-only 

universe.  
 

TABLE II: PERFORMANCE EVALUATION OF SYSTEMS (2006-2016) 

Market 
Pairs trading 

system (CAGR) 

Adaptive statistical 

arbitrage system (CAGR) 

Deutsche Borse Xetra 

stocks (DE) 
5.4427% 9.0051% 

Tokyo Stock Exchange 

ETFs (JP) 
3.1954% 3.7382% 

Tokyo Stock Exchange 

stocks (JP) 
3.5416% 8.7773% 

NYSE/NASDAQ ETFs 

(US) 
5.4197% 7.8518% 

NYSE/NASDAQ 

stocks (US)  
2.4285% 7.1178% 

Johannesburg Stock 

Exchange (SA) 
9.3950% 4.9076% 

Hong Kong Stock 

Exchange stocks (CH) 
17.3566% 18.1910% 

 

 
Fig. 1. Average excess return produced by systems. 

 

From the results in Table II, we can compute the average 

CAGR of the statistical arbitrage systems for developed 

markets and emerging markets. The average CAGR of the 

systems on the developed markets is 5.65% while the average 

CAGR of the systems, as applied on the emerging markets, is 

12.46%. We can hereby conclude that hypothesis 1 holds true 

over the period of January 2007 – June 2016. Note that the 

systems have a training period where no trading takes place 

from January 2006 to January 2007.   

We test for hypothesis 2, by dividing the period of January 

2007 to June 2016 into three periods of equal length such that 

each period contains 37 months. The statistic that is of 

importance in testing this hypothesis is excess returns (or 

alpha). Once again the systems were evaluated over these 

three time frames and the excess returns were measured. The 

average excess returns are shown in Fig. 1.  

From the results shown in Fig. 1, it is clear that the period 

of January 2007 to February 2010 provided considerably 

more exploitable opportunities for statistical arbitrage than 

the succeeding two periods. The second period (when 

financial markets recovered from the financial crisis) did not 

provide fertile grounds for statistical arbitrage systems. The 

excess returns improved in the third period, but are much less 

than the results from the first period. Hypothesis 2 thus holds 

true as excess returns for statistical arbitrage systems have 

declined since the financial crisis in 2008-2009. 

In order to test our third hypothesis, that statistical arbitrage 

systems have larger excess returns during non-trending / 

bearish markets, two different market regimes were examined 

for each universe. We characterized the markets as upward 

trending (bullish) or non-trending / downward trending 

(bearish) by examining the price action of the indices that 

track the stock markets. We defined bullish markets as 

periods where a market index experienced a CAGR of more 

than 10%. Bearish markets were defined as periods where the 

CAGR of a market index was less than 2%. Our choices for 

market index trackers and the periods found to be either 

bullish or bearish are depicted in Table III.  
 

TABLE III: INDEX TRACKERS AND MARKET REGIME PERIODS 

Index tracker (country) Bearish period Bullish period 

DAX index (DE) 
Jul 2007 – Jul 

2011 
Oct 2011 – Apr 2015 

Nikkei 225 index (JP) 
Jan 2009 – Jan 

2012 
Jan 2013 – Jan 2015 

S&P 500 index (US) 
Jan 2008 – Jan 

2102 
Jan 2012 – Jan 2015 

MSCI EZA (SA) 
Jan 2011 – Jan 

2015 
Jan 2009 – Jan 2011 

HSI index (CH) 
Jan 2010 – Jan 

2012 
Jan 2007 – Jan 2008 

 

The annualized growth rate of the index trackers for the 

bearish and bullish periods that were chosen for each of the 

financial markets that we examine are shown in Table IV to 

support our decisions for choosing these periods. 
 

TABLE IV: ANNUALIZED RETURNS OF INDEX TRACKERS 

Index tracker (country) Bearish period Bullish period 

DAX index (DE) -1.46% 23.78% 

Nikkei 225 index (JP) 1.07% 28.90% 

S&P 500 index (US) -2.79% 15.73% 

MSCI EZA (SA) 0.38% 34.47% 

HSI index (CH) -2.55% 32.82% 

 

The statistical arbitrage systems were tested over the 

specified periods in Table III. The excess returns produced by 

the systems during these periods were measured. The average 

excess returns during bearish market regimes was calculated 

to be 5.99%. The average excess returns during bullish 
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markets were -15.89%. These results support hypothesis 3 as 

the excess returns during bearish market regimes were 

noticeably larger than for the identified bullish market 

regimes. 

 

VI. CONCLUSIONS 

In this study we examined the performance of statistical 

arbitrage systems over a range of different financial markets 

including the Deutsche Börse Xetra, Tokyo Stock Exchange, 

New York Stock Exchange, NASDAQ, Johannesburg Stock 

Exchange and the Hong Kong Stock Exchange. The study 

considered the period of January 2006 – June 2016 which 

included different market regimes and a stock market crash. 

We examined the performance of two statistical arbitrage 

systems by formulating three hypotheses. The first hypothesis 

investigated whether returns for statistical arbitrage systems 

are larger in emerging markets than in developed markets. It 

was found that this was indeed the case over the period that 

was studied. The average CAGR of the systems in developed 

markets was 5.65% and in emerging markets was found to be 

12.46%. The second hypothesis investigated whether excess 

returns of the systems have increased or decreased since the 

financial crisis. It was found that excess returns have 

noticeably decreased since the stock market crash, but that the 

excess returns seemed to be slightly increasing again in recent 

years. The third hypothesis investigated the performance of 

statistical arbitrage during different market regimes. It was 

found that these systems generally have positive excess 

returns during non-trending or downward trending markets. 

Our results indicated average excess returns of 5.99% for 

non-trending markets. During upward trending markets, the 

systems generally had negative excess returns, with an 

average excess return of -15.89%.    

We conclude that statistical arbitrage systems can be a 

source of excess returns during non-trending market regimes 

and that these systems can provide returns that are 

uncorrelated to the overall market returns. The systems that 

we studied were unable to provide positive excess returns 

during upward trending markets, indicating that these periods 

may be better suited for trend-following systems.  

In future research the statistical arbitrage systems can be 

tested on higher frequency data to observe performance on an 

intraday trading basis. As statistical arbitrage has been 

demonstrated to perform differently in different market 

regimes methods will be developed to automatically detect 

the onset of bearish and bullish market to allow automated 

switching between market strategies suitable for the current 

regime.   
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