
 

Abstract—Data envelopment analysis (DEA) assumes 

homogeneity among the decision-making units (DMUs) for 

measuring the relative efficiency of DMUs. In actual practice 

the efficiency scores generated by DEA may reflect the 

underlying differences in environments rather than true 

operational efficiency when DMUs do not operate under similar 

conditions. This work considers measuring the relative 

efficiency of non-homogeneous DMUs in a fuzzy environment. 

A two-stage analysis incorporating imprecise environmental 

factors into DEA model for measuring the relative efficiency of 

non-homogeneous units is proposed. A fuzzy regression analysis 

is employed for adjusting the data of DMUs to account for 

variations in the fuzzy causes of non-homogeneity. DEA with 

fuzzy residual errors is then performed to construct a scalar 

measure of efficiency for all DMUs. An example of the 

performance assessment of municipalities' solid waste recycling 

and disposal channels is included. This is the first attempt to 

estimate the relative efficiency for non-homogeneous DMUs in a 

fuzzy environment. 

 
Index Terms—Data envelopment analysis, fuzzy optimization, 

non-homogeneous, fuzzy regression.  

 

I. INTRODUCTION 

Measuring the efficiency of decision making units (DMUs) 

has been a subject of tremendous interest to management 

practitioners and theorists. Data envelopment analysis (DEA) 

provides a methodology for measuring the relative efficiency 

of a group of homogeneous DMUs in the sense that each uses 

the same inputs and outputs measures and operates in 

common environments. However, homogeneity conditions 

might not exist in many real world cases. DMUs could 

operate under different environmental conditions or lack 

some inputs or outputs. As an example, consider the case 

where the DMUs are plants in the same industry that may not 

all produce the same products [1]. Another is the case of 

evaluating the relative performance levels of police forces. 

Crime rates in a given precinct may be influenced by some 

external environmental factors, e.g., the level of residents' 
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education and percentage of unemployed residents of nearby 

communities. These socioeconomic characteristics of nearby 

communities are beyond the control of police departments 

and might affect police efficiency [2]. When the DMUs are 

not operated under similar conditions and homogeneous, the 

efficiency scores generated by DEA may not reflect true 

managerial and operational efficiency. Therefore, extending 

DEA to relax the assumption of homogeneity has been 

important both in theory and in practice. 

Researchers have studied this topic from different 

perspectives depending on the reason for heterogeneity. 

Potentially, the nonhomogeneous DMU issue could be 

handled by breaking the set of DMUs into multiple groups, 

with all members of any group producing the same outputs, 

and then doing a separate DEA analysis for each group. 

However, one needs large numbers of DMUs to do this [3]. 

Another strategy is to adjust for non-homogeneity. A 

common adjusting technique in the literature is to use the 

regression equation. Reference [4] calculated an adjusted 

efficiency score using a regression model with the DEA 

efficiency scores as the dependent variable to identify 

managerial inefficiency not caused by extrinsic factors. 

Reference [5] performed a regression analysis on the DEA 

using the residuals of the regression analysis as the adjusted 

scores. Reference [6] proposed a two-stage method to 

account for non-homogeneity in DMU characteristics. A 

stepwise multiple regression was implemented on the set of 

efficiency scores using a set of DMU characteristics that are 

expected to account for differences in efficiency not 

attributable to management. DEA based on the adjusted 

DMU outputs was then performed to produce efficiency 

scores for non-homogeneous DMUs. Reference [3] proposed 

two additional methods of compensating for non- 

homogeneity. Reference [2] applied a three-stage analysis to 

explicitly incorporate environment factor into the DEA 

model for measuring the performance of police forces in 

Taiwan. Reference [7] developed a DEA type of 

methodology to evaluate non-homogeneous DMUs with 

different input configurations. 

Due to the fuzziness involved in the real-world decision 

making problems, some data available for efficiency analysis 

of DMUs might be imprecise or vagueness, e.g., the causes of 

non-homogeneity might be in the form of qualitative or 

linguistic. A variety of methodologies and applications in 

fuzzy DEA has been studied for efficiency measurement in a 

fuzzy environment. Reference [8] developed a procedure to 

measure the efficiencies of DMUs with fuzzy observations. 

The fuzzy measurement concept and the extension principle 

are adopted to transform the fuzzy DEA model into a 

traditional DEA model.  Reference [9] considered the fuzzy 

CCR model with asymmetric triangular fuzzy numbers, and 

[10] proposed the fuzzy BCC model using probabilities to 
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conduct the analysis. They employed  -cut to transform the 

fuzzy DEA model into a linear structure model. For a 

taxonomy and review of the fuzzy DEA methods, readers can 

refer to the work by [11]. To the best of our knowledge, no 

literature to date has studied the efficiency measures for 

non-homogeneous units in a fuzzy environment. 

In this work a two-stage analysis which incorporates the 

imprecise environmental factors into the fuzzy DEA model 

for measuring the relative efficiencies of non- homogeneous 

DMUs with fuzzy data is developed. In the first stage inputs 

and outputs of non-homogeneous units DMUs are adjusted 

by employing the fuzzy regression analysis to account for 

variations in the imprecise causes of non-homogeneity. DEA 

with fuzzy residual errors is developed to measure the 

relative efficiency for all DMUs in the second stage of the 

proposed method. An example of the performance 

assessment of municipalities' solid waste recycling and 

disposal channels is provided. The rest of the paper is 

organized as follows. In Section II, the fuzzy regression 

analysis is introduced to compensate the non-homogeneity of 

DMUs. DEA with fuzzy residual errors is then developed to 

measure the relative efficiency for all DMUs in Section III. 

An example of evaluating the relative efficiency of municipal 

reverse logistics channels is included in Section IV. The 

paper is concluded in Section V. 

  

II. A METHODOLOGY FOR COMPENSATING THE 

NON-HOMOGENEITY OF DMUS 

To compensate the non-homogeneity of DMUs, the 

simplest adjustment is to estimate inputs and outputs using 

regression analysis. This work considers adjusting the data of 

the non-homogeneous DMUs by fuzzy regression analysis 

with the fuzzy causes of non-homogeneity as the independent 

variables. Suppose there are m inputs, s outputs and n DMUs 

being evaluated. Denote 𝑥𝑖𝑗 as the i-th fuzzy input and �̃�𝑟𝑗 as 

the r-th fuzzy output of the j-th DMU,  i = 1,2,…,m , r 

=1,2...,s ,  j=1,2,...,n. To detect how external factors affect the 

variation in the inputs and outputs of the non-homogeneous 

DMUs, we consider the fuzzy regression equations: 

�̂�𝑟𝑗 = 𝛼𝑟𝑗 + 𝛽𝑟𝑗,1�̃�𝑟𝑗,1 + 𝛽𝑟𝑗,2�̃�𝑟𝑗,2 +⋯+ 𝛽𝑟𝑗,𝑐 �̃�𝑟𝑗,𝑐 +

               �̃�𝑟𝑗,1
′ + �̃�𝑟𝑗,2

′  ,  

and 

 𝑥𝑖𝑗 = 𝛼𝑖𝑗 + 𝛽𝑖𝑗,1�̃�𝑖𝑗,1 + 𝛽𝑖𝑗,2�̃�𝑖𝑗,2 +⋯+ 𝛽𝑖𝑗,𝑐 �̃�𝑖𝑗,𝑐 + �̃�𝑖𝑗,1 +

               �̃�𝑖𝑗,2 , 

where �̂�𝑟𝑗  and  𝑥𝑖𝑗  are the fuzzy estimated values of the 

actual fuzzy outputs �̃�𝑟𝑗  and inputs 𝑥𝑖𝑗 , 

respectively , �̃�1  … , �̃�𝑐  are the imprecise external factors, 

�̃�𝑖𝑗,1 and �̃�𝑟𝑗,1
′  represent the sum of randomness and 

measurement error, and �̃�𝑖𝑗,2  and �̃�𝑟𝑗,2
′  represent differences 

due to policy, practice, and operating conditions. 

A number of novel approaches to fuzzy regression were 

proposed after the inception of fuzzy set theory [12]. 

Reference [13] developed the fuzzy least squares regression 

which considers minimizing the overall squared error 

between the observed values and the estimated values. 

Reference [14] proposed the possibilistic regression approach 

where the fuzzy linear regression with fuzzy coefficients and 

crisp input variables was introduced. Both of the approaches 

to fuzzy regression analysis have been investigated 

extensively [15]-[18]; however, they are sensitive to outliers 

[19]. Reference [20] suggested the least absolute deviation 

estimators to construct the fuzzy regression model and 

showed that the proposed approach is more robust than the 

least squares deviation method when the data contains fuzzy 

outliers. With the development of computing technology, the 

least absolute deviation method was later studied and applied 

by some researchers [19], [21]-[23]. 

Taking advantage of the well-developed techniques in 

fuzzy regression analysis, the method of least absolute 

deviation is employed to construct the fuzzy regression 

models for adjusting the inputs and outputs of DMUs in this 

work. We recall some basic concepts and important 

properties associated with fuzzy set theory and the least 

absolute deviation regression analysis. 

Definition 1. Suppose that the membership function of the 

fuzzy number  �̃�  =  (𝑎1, 𝑎2, 𝑎3) is defined as 

𝜇�̃�(𝑥) =

{
 
 

 
 

𝑥 − a1
a2

  ,                   a1 ≤ 𝑥 ≤ a1 + a2

a1 + a2 + a3 − 𝑥

a3
 , a1 + a2 < 𝑥 ≤ a1 + a2 + a3 

0 ,                                  otherwise.

 

Then we call  �̃�  =  (𝑎1,𝑎2, 𝑎3) a triangular fuzzy number 

with  𝑎2, 𝑎3 ≥  0, where 𝑎1,𝑎2, 𝑎3 are the left point, the width 

of the left side, and the width of the right side of the triangular 

fuzzy number  ã , respectively. 

Triangular fuzzy numbers are of more importance among 

the various types of fuzzy numbers. In this work we consider 

the imprecise data of DMUs as triangular fuzzy numbers. 

According to Zadeh’s extension principle [12], for two 

triangular fuzzy numbers ã  =  (a1, a2, a3)  and �̃�  =
 (𝑏1, 𝑏2, 𝑏3), we have the following results: 

�̃� + �̃� = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3) 

�̃� − �̃� = (𝑎1 − 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3) 

�̃� × �̃� = (𝑎1 × 𝑏1, |𝑏1 × 𝑎2| + |𝑎1 × 𝑏2|, |𝑏1 × 𝑎3| +
|𝑎1 × 𝑏3|), where  𝑎1 ≠ 0 ,  𝑏1 ≠ 0. 

 

Definition 2. [24] For two triangular fuzzy numbers �̃�  =

 (𝑎1, 𝑎2, 𝑎3) , and �̃�  =  (𝑏1, 𝑏2, 𝑏3) . The absolute distance 

between ˜a and ˜b is defined as 

       𝑑(�̃�, �̃�) = |𝑎1 − 𝑏1| + |𝑎2 − 𝑏2| + |𝑎3 − 𝑏3|.        (1) 

It is shown that d is a distance metric on triangular fuzzy 

numbers (Li et al. 2016a). Suppose that ỹ and �̃�1,· · · , �̃�𝑐   are 

triangular fuzzy numbers and 𝛼, 𝛽1,· · · , 𝛽𝑐  are crisp 

coefficients. The fuzzy linear regression model with crisp 

coefficients and fuzzy independent variables can be 

described as follows: 

 �̃�  = α + 𝛽1�̃�1+· · · + 𝛽𝑐 �̃�𝑐.                           (2) 

For a group of w fuzzy sample data, say (�̃�𝑖1, �̃�𝑖2, … , �̃�𝑖𝑐 , 𝑦�̅�), 

𝑖 =  1, 2,· · · , 𝑤 , let the triangular fuzzy number �̃�𝑖𝑘 =

(𝑡𝑖𝑘,1, 𝑡𝑖𝑘,2, 𝑡𝑖𝑘,3), 𝑖 =  1, 2,· · · , 𝑤, 𝑘 =  1, 2,· · · , 𝑐 ,  be the 

independent variable and �̅�𝑖 = (y𝑖,1, 𝑦𝑖,2, 𝑦𝑖,3) be the 

dependent variable in the fuzzy linear regression model (2). 

By the extension principle, we have 
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�̃�𝑖= α + 𝛽1 �̃�𝑖1+ 𝛽2�̃�𝑖2+· · · + 𝛽𝑐 �̃�𝑖𝑐 

= (α + ∑ 𝛽𝑘𝑡𝑖𝑘,1
𝑐
𝑘=1 , ∑ |𝛽𝑘𝑡𝑖𝑘,2|, ∑ |𝛽𝑘𝑡𝑖𝑘,3|).

𝑐
𝑘=1

𝑐
𝑘=1  

To determine the estimated regression 

coefficients, �̂�, �̂�1 ,… , �̂�𝑐 , the least absolute deviation 

criterion is employed by minimizing the overall absolute 

error distance. It can be described as the following 

optimization problem： 

min
∝̂,�̂�1,…,�̂�𝑐

∑ 𝑑(�̅�𝑖  ,
𝑤
𝑖=1 α̂ + �̂�1�̃�𝑖1 + �̂�2�̃�𝑖2 +⋯+ �̂�𝑐 �̃�𝑖𝑐).      (3) 

According to (1), the optimization problem (3) can be 

rewritten as 

min
∝̂,�̂�1,…,�̂�𝑐

∑ |𝑦𝑖,1 − α̂ −
𝑤
𝑖=1 ∑ β̂𝑘𝑡𝑖𝑘,1| +

𝑐
𝑘=1 |𝑦𝑖,2 −

∑ |β̂𝑘𝑡𝑖𝑘,2|| + |𝑦𝑖,3 −∑ |β̂𝑘𝑡𝑖𝑘,3|| 
𝑐
𝑘=1

𝑐
𝑘=1 ,                               (4) 

which is equivalent to 

   min∑ (𝜇𝑖1 +
𝑤
𝑖=1 𝜇𝑖2 + 𝑣𝑖1 + 𝑣𝑖2 + 𝜑𝑖1+𝜑𝑖2) 

s.t.     𝑦𝑖.1 − α̂ − ∑ β̂𝑘𝑡𝑖𝑘,1
𝑐
𝑘=1 = 𝜇𝑖1 − 𝜇𝑖2 

              𝑦𝑖.2 −∑ |β̂𝑘𝑡𝑖𝑘,2|
𝑐
𝑘=1 = 𝑣𝑖1 − 𝑣𝑖2                      (5) 

              𝑦𝑖.3 −∑ |β̂𝑘𝑡𝑖𝑘,3|
𝑐
𝑘=1 = 𝜑𝑖1−𝜑𝑖2 

              𝜇𝑖1, 𝜇𝑖2, 𝑣𝑖1, 𝑣𝑖2,𝜑𝑖1, 𝜑𝑖2 ≥ 0. 

The estimated regression coefficients,  𝛼,̂  �̂�1, … , �̂�𝑐 , are 

then determined by solving the problem (5). Consequently, 

the fuzzy estimated value of �̃� can be obtained as follows: 

             �̂� = �̂� + �̂�1�̃�1 + �̂�2�̃�2 +⋯+ �̂�𝑐 �̃�𝑐 .                        (6) 

 

III. DEA WITH FUZZY RESIDUAL ERRORS 

After adjusting the imprecise inputs 𝑥𝑖𝑗 and outputs �̃�𝑟𝑗  of 

DMUs to account for variations in the fuzzy causes of 

non-homogeneity, we then perform DEA using the 

differences between actual and estimated fuzzy inputs and 

outputs. That is, instead of using the actual inputs 𝑥𝑖𝑗  and 

outputs �̃�𝑟𝑗, we use the residual errors defined as 

𝑥𝑖𝑗
′ ≜ 𝑥𝑖𝑗 − 𝑥𝑖𝑗  , 𝑖 = 1,2,… ,𝑚  , 𝑗 = 1,2,… , 𝑛,           (7) 

and 

    �̃�𝑟𝑗
′ ≜ �̃�𝑟𝑗 − �̂�𝑟𝑗  , 𝑟 = 1,2,… , 𝑠   , 𝑗 = 1,2,… , 𝑛.          (8) 

The DEA model with inputs 𝑥𝑖𝑗
′  and outputs �̃�𝑟𝑗

′  can be 

described as 

max
𝑢,𝑣

  ∑𝑢𝑟�̃�𝑟𝑝
′

𝑠

𝑟=1

/∑𝑣𝑖𝑥𝑖𝑝
′

𝑚

𝑖=1

 

s.t.   ∑ 𝑢𝑟�̃�𝑟𝑗
′𝑠

𝑟=1 −∑ 𝑣𝑖𝑥𝑖𝑗
′ ≤ 0𝑚

𝑖=1 , 𝑗 = 1,2,… , 𝑛       (9) 

     𝑢𝑟 , 𝑣𝑖 ≥ 0 , ∀𝑟 = 1,2,… , 𝑠 , 𝑖 = 1,2,… ,𝑚, 

where 𝑢 =  (𝑢1, 𝑢2, . . . , 𝑢𝑠)
𝑇  and 𝑣 =  (𝑣1, 𝑣2, . . . , 𝑣𝑚)

𝑇  are 

the weight vectors to be applied to the inputs and outputs of 

DMUs, respectively. 

Let 𝑥𝑖𝑗
′ = (𝑥𝑖𝑗

𝑙 , 𝑥𝑖𝑗
𝑚 − 𝑥𝑖𝑗

𝑙 , 𝑥𝑖𝑗
𝑢 − 𝑥𝑖𝑗

𝑚)  and �̃�𝑟𝑗
′ = (𝑦𝑟𝑗

𝑙 , 𝑦𝑟𝑗
𝑚 −

𝑦𝑟𝑗
𝑙 , 𝑦𝑟𝑗

𝑢 − 𝑦𝑟𝑗
𝑚) be triangular fuzzy numbers with 

corresponding membership functions defined as 

𝜇𝑥𝑖𝑗
′ (𝑥) =

{
 
 

 
 

𝑥−𝑥𝑖𝑗
𝑙

𝑥𝑖𝑗
𝑚−𝑥𝑖𝑗

𝑙   , 𝑥𝑖𝑗
𝑙 ≤ 𝑥 ≤ 𝑥𝑖𝑗

𝑚   

𝑥𝑖𝑗
𝑢−𝑥

𝑥𝑖𝑗
𝑢−𝑥𝑖𝑗

𝑚 , 𝑥𝑖𝑗
𝑚 ≤ 𝑥 ≤ 𝑥𝑖𝑗

𝑢

0 ,         otherwise,

  i = 1,2,···,m, j = 1,2,···,n, 

and 

𝜇�̃�𝑖𝑗
′ (𝑥) =

{
 
 

 
 

𝑦−𝑦𝑟𝑗
𝑙

𝑦𝑟𝑗
𝑚−𝑦𝑟𝑗

𝑙   , 𝑦𝑟𝑗
𝑙 ≤ 𝑦 ≤ 𝑦𝑟𝑗

𝑚   

𝑦𝑟𝑗
𝑢 −𝑦

𝑦𝑟𝑗
𝑢 −𝑦𝑟𝑗

𝑚 , 𝑦𝑟𝑗
𝑚 ≤ 𝑦 ≤ 𝑦𝑟𝑗

𝑢

0 ,         otherwise,

  r = 1,2,···,s ,j = 1,2,···,n. 

For each α ∈ [0,1], the α-level sets of 𝑥𝑖𝑗
′  and �̃�𝑟𝑗

′  are 

defined as 

(𝑥ij
′ )
α
= [α𝑥𝑖𝑗

𝑚 + (1 − α)𝑥𝑖𝑗
𝑙  , α𝑥𝑖𝑗

𝑚 + (1 − α)𝑥𝑖𝑗
𝑢 ] , 

𝑖 =  1,2,···,𝑚, 𝑗 =  1,2,···, 𝑛, 
and 

(�̃�rj
′ )

α
= [α𝑦𝑟𝑗

𝑚 + (1 − α)𝑦𝑟𝑗
𝑙  , α𝑦𝑟𝑗

𝑚 + (1 − α)𝑦𝑟𝑗
𝑢 ] , 

𝑟 =  1,2,···, 𝑠, 𝑗 =  1,2,···, 𝑛, 

respectively. Let 𝑥𝑖𝑗
′  and 𝑦𝑟𝑗

′  be variables in the α-level sets 

of 𝑥ij
′  and �̃�rj

′ , respectively. By introducing α-cuts of 

objective function and constraints, the problem (9) can be 

restated as the crisp optimization problem [9]: 

max
𝑢,𝑣

∑ 𝑢𝑟�̃�𝑟𝑝
′𝑠

𝑟=1 /∑ 𝑣𝑖�̃�𝑖𝑝
′𝑚

𝑖=1   

s.t.  ∑ 𝑢𝑟�̃�𝑟𝑗
′𝑠

𝑟=1 −∑ 𝑣𝑖𝑥𝑖𝑗
′ ≤ 0𝑚

𝑖=1 , 𝑗 = 1,2,… , 𝑛, 

     α𝑥𝑖𝑗
𝑚 + (1 − α)𝑥𝑖𝑗

𝑙  ≤ 𝑥𝑖𝑗
′ ≤ α𝑥𝑖𝑗

𝑚 + (1 − α)𝑥𝑖𝑗
𝑢  , 

𝑖 =  1,2,···,𝑚, 𝑗 =  1,2,···, 𝑛, 

     α𝑦𝑟𝑗
𝑚 + (1 − α)𝑦𝑟𝑗

𝑙 ≤ 𝑦𝑟𝑗
′ ≤ α𝑦𝑟𝑗

𝑚 + (1 − α)𝑦𝑟𝑗
𝑢 , 

𝑟 =  1,2,···, 𝑠, 𝑗 =  1,2,···, 𝑛, 

  𝑢𝑟 , 𝑣𝑖 ≥ 0 , ∀ 𝑟 =  1,2,···, 𝑠, 𝑖 =  1,2,···,𝑚,          (10) 

or equivalently 

         max
𝑢,𝑣

∑𝑢𝑟𝑦𝑟𝑝
′

𝑠

𝑟=1

                                                                                        

s.t. ∑ 𝑣𝑖𝑥𝑖𝑝
′ = 1𝑚

𝑖=1 , 

      ∑ 𝑢𝑟𝑦𝑟𝑗
′𝑠

𝑟=1 − ∑ 𝑣𝑖𝑥𝑖𝑗
′ ≤ 0𝑚

𝑖=1 , 𝑗 = 1,2,… , 𝑛, 

      α𝑥𝑖𝑗
𝑚 + (1 − α)𝑥𝑖𝑗

𝑙  ≤ 𝑥𝑖𝑗
′ ≤ α𝑥𝑖𝑗

𝑚 + (1 − α)𝑥𝑖𝑗
𝑢  , 

𝑖 =  1,2,···,𝑚, 𝑗 =  1,2,···, 𝑛, 

     α𝑦𝑟𝑗
𝑚 + (1 − α)𝑦𝑟𝑗

𝑙 ≤ 𝑦𝑟𝑗
′ ≤ α𝑦𝑟𝑗

𝑚 + (1 − α)𝑦𝑟𝑗
𝑢 , 

𝑟 =  1,2,···, 𝑠, 𝑗 =  1,2,···, 𝑛, 
  𝑢𝑟 , 𝑣𝑖 ≥ 0 , ∀ 𝑟 =  1,2,···, 𝑠, 𝑖 =  1,2,···,𝑚.         (11) 

Let �̅�𝑖𝑗 = 𝑣𝑖𝑥𝑖𝑗
′ , 𝑖 =  1,2,···,𝑚, 𝑗 =  1,2,···, 𝑛,  and �̅�𝑟𝑗 =

𝑢𝑟𝑦𝑟𝑗
′ , 𝑟 =  1,2,···, 𝑠, 𝑗 =  1,2,···, 𝑛.  By these substitutions, 

the problem (11) can be converted to the following linear 

programming problem:         

  max
𝑢,𝑣

∑ �̅�𝑟𝑝
𝑠
𝑟=1  

s.t. ∑ �̅�𝑖𝑝 = 1
𝑚
𝑖=1 , 

      ∑ �̅�𝑟𝑗
𝑠
𝑟=1 − ∑ �̅�𝑖𝑗 ≤ 0

𝑚
𝑖=1 , 𝑗 = 1,2,… , 𝑛, 

      𝑣𝑖(α𝑥𝑖𝑗
𝑚 + (1 − α)𝑥𝑖𝑗

𝑙 )  ≤ �̅�𝑖𝑗 ≤ 𝑣𝑖(α𝑥𝑖𝑗
𝑚 +

                 (1 − α)𝑥𝑖𝑗
𝑢  ),  𝑖 =  1,2,···,𝑚, 𝑗 =  1,2,···, 𝑛, 

     𝑢𝑟(α𝑦𝑟𝑗
𝑚 + (1 − α)𝑦𝑟𝑗

𝑙 ) ≤ �̅�𝑟𝑗 ≤ 𝑢𝑟(α𝑦𝑟𝑗
𝑚 +

                (1 − α)𝑦𝑟𝑗
𝑢 ),  𝑟 =  1,2,···, 𝑠, 𝑗 =  1,2,···, 𝑛, 

  𝑢𝑟 , 𝑣𝑖 ≥ 0 , ∀ 𝑟 =  1,2,···, 𝑠, 𝑖 =  1,2,···,𝑚,         (12) 

International Journal of Trade, Economics and Finance, Vol. 11, No. 4, August 2020

67



For each 𝛼 ∈  (0,1], a solution of the fuzzy DEA problem 

(9) can be obtained by solving the linear programming 

problem (12). 

According to the basic assumption of DEA, the 

measurement error and randomness can be eliminated. 

Therefore, we have �̃�𝑟𝑗,1 = �̃�𝑖𝑗,1
′ = 0 . Consequently, the 

residual errors must be due to policy and practice. This leads 

to the following result. 

 

Theorem 1. Assume that �̃�𝑖𝑗,1 = �̃�𝑟𝑗,1
′ = 0 . If the fuzzy 

regressions used to estimate the values of the fuzzy inputs 

and outputs are all perfect fits, that is, �̃�𝑖𝑗,2 = �̃�𝑟𝑗,2
′ = 0, then 

the DEA model (9) with fuzzy residual errors defined in (7) 

and (8) places all DMUs on the efficiency frontier. 

 

Proof. Let 𝑥𝑖𝑗  and �̂�𝑟𝑗  be the estimated values of fuzzy 

inputs and outputs, respectively, and 𝑥𝑖𝑗 and �̃�𝑟𝑗 be the actual 

values of the fuzzy inputs and outputs, respectively. Consider 

the fuzzy residual errors 𝑥𝑖𝑗
′  and �̃�𝑟𝑗

′  defined in (7) and (8), 

respectively, i.e., 𝑥𝑖𝑗
′ = 𝑥𝑖𝑗 − 𝑥𝑖𝑗  and  �̃�𝑟𝑗

′ = �̃�𝑟𝑗 − �̂�𝑟𝑗 , 𝑗 =

 1,···, 𝑛, 𝑖 =  1,···,𝑚, and   𝑟 =  1,···, 𝑠. Since all regressions 

estimating the inputs and outputs are perfect fits, then all  

𝑥𝑖𝑗
′ = �̃�𝑟𝑗

′ = 0 , and all 𝑥𝑖𝑝
′ = �̃�𝑟𝑝

′ = 0 . Then the objective 

function of the fuzzy DEA model (9)  
 

 ∑ 𝑢𝑟�̃�𝑟𝑝
′ /𝑠

𝑟=1 ∑ 𝑣𝑖𝑥𝑖𝑝
′𝑚

𝑖=1  
 

is indeterminate. Also,      
 

∑ 𝑢𝑟�̃�𝑟𝑗
′𝑠

𝑟=1 −∑ 𝑣𝑖𝑥𝑖𝑗
′𝑚

𝑖=1 ≤ 0 , 𝑗 = 1,2,… , 𝑛, 

is feasible. Thus, an efficiency score of 1 for each DMU is 

feasible, and all DMUs can be placed on the efficiency 

frontier. 

 

IV. AN     XAMPLE  

In this section, we applied the proposed method to assess 

the relative efficiency of the reverse logistics channels of 

twenty-three municipalities. The modified data studied in 

Haas [25] is utilized. All the municipalities acknowledge that 

refuse and recyclables must be collected and disposed of, and 

each has provided a means to achieve that. Since each 

municipality operates under a unique set of conditions, the 

municipalities fail to meet the homogeneity assumption of 

DEA. Their areas and populations are different. Additionally, 

the demographic characteristics of their residents vary and 

this may affect the propensity of the citizenry to participate in 

their recycling programs [3]. To compensate the 

non-homogeneity of the twenty-three municipalities, data are 

adjusted by the fuzzy regression analysis before performing 

DEA. The DEA model used in the analysis includes two 

inputs, size of the solid waste stream (𝑥1) and net channel 

costs (𝑥2), and two outputs, residents’ satisfaction to receive 

curbside solid waste removal service (�̃�1) and the quantity 

recycled in the municipality (�̃�2). Any or all of these inputs 

and outputs could potentially be affected by the differences in 

operating conditions. Table I provides inputs and outputs data 

for the study. 

Based on the study on [25], two external environmental 

factors which may cause differences in operating conditions 

among the municipalities were chosen. These factors include 

the residents’ tendencies to participate in the recycling 

program (�̃�1) and population (�̃�2). Table II provides data for 

the external environmental factors. 

 
TABLE I: INPUT AND OUTPUT DATA 

DMU 

    𝑗                       

Input 

        𝑥1𝑗                           

Output  

    𝑥2𝑗                �̃�1𝑗                 �̃�2𝑗                 

1 Abington (40823100100) 3558268     (80,10,5)   17466 

2 Allentown                     (5185250100)     4415240     (85,5,10)         19188 

3 Bensalem                         (2663510050)    2971000     (20,5,10)             3009 

4 Bristol Borough                   (488050100)         590734       (50,5,5)                 678 

5 Bristol Twp.                     (2679510050)     2168218     (50,5,10)  4933 

6 Cheltenham                      (2237350100)     1556099       (90,5,5)         11068 

7 Doylestown                       (6805100100)    1269131     (80,5,10)          1591 

8 Horsham                           (1105850100)     1941753     (70,5,10)  2115 

9 Lower Makefield               (2161250100)    2603100  (50,10,10)  8067 

10 LowerMoreland          (900110050)     768328       (60,5,10)  3543 

11 Lower Southampton  (9315100100)   1027374  (40,10,10)          2905 

12 Middletown                      (2019750100)    2298994     (30,5,10)          4091 

13 Montgomery                             (61865050)        2003249     (30,5,10)          1309 

14 Newtown                          (6418100100)     1391120       (40,5,5)           1283 

15 Northampton    (1660710050)     1984016  (60,10,10)          5533 

16 Plymouth                                 (87415050)      1098588     (60,5,10)           2343 

17 Springfield                   (11034100100)      1120890  (50,10,10)          2966 

18 Upper Dublin                   (1315410050)     1743444  (55,10,10)         3389 

19 Upper Moreland    (13190100100)     1664000     (75,5,10)           6413 

20 Upper Southampton  (7540100100)   927000     (50,5,10)           2404 

21 Warminster  (15399100100)      1760025       (60,5,5)            4048 

22 West Norriton      (778510050)      1492020     (30,10,5)             952 

23 Whitpain      (802350100)      1269000       (40,5,5)           1544 

 

TABLE II: ENVIRONMENTAL FACTORS 

DMU 

 j                    

Environmental factors 

(�̃�1𝑗 , �̃�2𝑗) 

1 Abington ((30,5,5),56444) 

2 Allentown                     ((50,5,5),105090) 

3 Bensalem                        ((60,5,5),57078) 

4 Bristol Borough                 ((40,10,5),10428) 

5 Bristol Twp.                    ((80,5,5),57703) 

6 Cheltenham                     ((80,5,5),34863) 

7 Doylestown                      ((60,5,10),17274) 

8 Horsham                         ((60,5,5),21887) 

9 Lower Makefield                ((80,10,10),30301) 

10 Lower Moreland     ((40,5,5),11852) 

11 LowerSouthampton     ((40,10,10),19896) 

12 Middletown                   ((60,5,5),44106) 

13 Montgomery                      ((70,5,5),18325) 

14 Newtown                       ((60,5,5),15857) 

15 Northampton    ((70,10,10),37979) 

16 Plymouth                           ((80,10,5),15771) 

17 Springfield                    ((50,10,10),19612) 

18 Upper Dublin                ((60,5,5),24682) 

19 Upper Moreland        ((70,10,5),25254) 

20 UpperSouthampton ((30,5,5),16175) 

21 Warminster ((50,5,5),33419) 

22 West Norriton ((60,10,10),15305) 

23 Whitpain ((70,10,10),16516) 

 

In the proposed method the least absolute deviation 

criterion is employed to determine the estimated regression 

coefficients, �̂�, �̂�1, �̂�2 , for each fuzzy data. For instance, to 

construct the fuzzy regression model for the first output 

variable �̃�1, the following problem is considered. 
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min
𝛼,̂�̂�1,�̂�2 

|80 − �̂� − 30�̂�1 − 56444 �̂�2 |+ |10 − |5�̂�1|| + 5 −

|5�̂�1|| + |85 − �̂� − 50�̂�1 − 105090�̂�2 |+ |5 − |5�̂�1|| + |10 −

|5�̂�1|| + |20 − �̂� − 60�̂�1 − 57078�̂�2 |+ |5 − |5�̂�1|| + |10−

|5�̂�1|| +⋯+ |30− �̂� − 60�̂�1 − 15305�̂�2 |+ |10 − |10�̂�1|| + 5 −

|10�̂�1|| + |40− �̂� − 70�̂�1 − 16516�̂�2 |+ |5 − |10�̂�1|| + |5 −

|10�̂�1||                                             

 

The estimated regression coefficients, �̂�, �̂�1, �̂�2, in (13) for 

each fuzzy data are shown in Table III. 

 
TABLE III: COEFFICENTS IN THE FUZZY REGRESSION MODEL 

 α 𝛽1 𝛽2 

Outputs  

Residents’ satisfaction to receive 

curbside solid waste removal 

service( �̃�1) 
The quantity recycled in the 

municipality( �̃�2) 
Inputs  

Size of the solid waste stream( 𝑥1) 

    

1.75              0.9             0.0001 

 

 

1.1998         0.9733          0.1439 

 

 

 

   7.7720            10              0.4717 

Net channel costs( 𝑥2)     12.8042       69.8208        52.0290 

 

After adjusting the fuzzy data of DMUs to account for 

variations in the causes of non-homogeneity, DEA model 

with fuzzy residual errors is performed to construct a scalar 

measure of efficiency for all DMUs. A solution of the DEA 

with fuzzy residual errors can be obtained by solving the 

following linear programming problem: 

  max �̅�1𝑝 + �̅�2𝑝 

s.t.  �̅�1𝑝 + �̅�2𝑝 = 1 

       �̅�1𝑗 + �̅�2𝑗 − �̅�1𝑗 + �̅�2𝑗 ≤ 0 , 𝑗 = 1,2,… ,23 ,   

𝑣1(𝛼𝑥1𝑗
𝑚 + (1 − 𝛼)𝑥1𝑗

𝑙 ≤ �̅�1𝑗 ≤ 𝑣1(𝛼𝑥1𝑗
𝑚 + (1 − 𝛼)𝑥1𝑗

𝑢  , 

𝑗 = 1,2,… ,23 , 

𝑣2(𝛼𝑥2𝑗
𝑚 + (1 − 𝛼)𝑥2𝑗

𝑙 ≤ �̅�2𝑗 ≤ 𝑣2(𝛼𝑥2𝑗
𝑚 + (1 − 𝛼)𝑥2𝑗

𝑢 ,  

𝑗 = 1,2,… ,23 , 

 𝑢1(𝛼𝑦1𝑗
𝑚 + (1 − 𝛼)𝑦1𝑗

𝑙 ≤ �̅�1𝑗 ≤ 𝑢1(𝛼𝑦1𝑗
𝑚 + (1 − 𝛼)𝑦1𝑗

𝑢 ,  

𝑗 = 1,2,… ,23 , 

  𝑢2(𝛼𝑦2𝑗
𝑚 + (1 − 𝛼)𝑦2𝑗

𝑙 ≤ �̅�2𝑗 ≤ 𝑢2(𝛼𝑦2𝑗
𝑚 + (1 − 𝛼)𝑦2𝑗

𝑢  , 

𝑗 = 1,2,… ,23 ,                              (14) 

Table IV shows the efficiency scores and the associated 

rankings calculated from the DEA model (14). The columns 

headed “Unadjusted model” represent the results produced 

by using the unadjusted inputs and outputs. The columns 

headed “Residual error model” represent the results obtained 

by the adjustment techniques proposed in this work. In our 

experiment, the efficiency scores produced by the unadjusted 

model are spread across the range from 1.0000 to 0.7814 with 

a mean of 0.8937 and a standard deviation of 0.0802. The 

efficiency scores produced by the residual error model are 

spread across a larger range from 1.0000 to 0.1369 with a 

mean of 0.7400 and a standard deviation of 0.2561. There are 

six units on the efficiency frontier in the results of the 

unadjusted model. When external environmental factors were 

accounted for, Bristol Borough (No. 4), Cheltenham (No. 6), 

and Newtown (No. 14) leave the efficiency frontier, but 

Cheltenham (No. 6) retains a high efficiency score. Bristol 

Borough (No. 4) and Newtown (No. 14) which are on the 

efficiency frontier in the results of the unadjusted models 

reduce to relatively low efficiency scores after compensating 

for non-homogeneity. Moreover, the performance of Lower 

Moreland (No. 10) and Whitpain (No. 23) which are among 

the “mid-range” performers in terms of the unadjusted 

efficiency score, become the top performers when using the 

residual efficiency. On the other hand, the efficiency ratings 

of Moreland (No. 10), Plymouth (No. 16) and Whitpain (No. 

23) using the residual efficiency, are improved noticeably as 

compared to its rating in terms of the unadjusted efficiency 

scores. While Bristol Borough (No. 4) and Newtown (No. 14) 

exhibit a noticeable decline in their efficiency ratings after 

compensating for non-homogeneity. Our results imply that 

the external environmental factors do have some effects on 

the efficiency scores and rankings of each municipality. The 

results will be closer to the real level of efficiency after 

compensating for non-homogeneity. 

 
TABLE IV: EFFICIENCY SCORES AND THE ASSOCIATED RANKINGS 

DMU                                 Unadjusted model                   Residual error model   

    j                                        Score         Rank                         Score           Rank    

1 Abington   0.8894       11            0.4163       20 

2 Allentown                      1.0000           1            1.0000      1  

3 Bensalem                          0.7923       21            0.1369        23 

4 Bristol Borough                  1.0000           1                0.5238            18 

5 Bristol Twp.                      0.9409           8        0.9878          8 

6 Cheltenham                       1.0000           1        0.8834          9 

7 Doylestown                       0.8144         18                       0.6741           15  

8 Horsham                           0.7814         23             0.4824       19 

9 Lower Makefield               0.8422         16                       0.3942          21 

10 LowerMoreland        0.8782         13                       1.0000            1 

11 LowerSouthampton    0.9035         10                       0.9028          10 

12 Middletown                     0.8487         15                     0.6124          17 

13 Montgomery                        1.0000          1                 1.0000       1  

14 Newtown                         1.0000        1                0.6981       14 

15 Northampton   0.9222          9                 0.9938         6 

16 Plymouth                            0.8018         20                       0.7238           13  

17 Springfield                    0.8863         12                        0.8354          11 

18 Upper Dublin                  0.8196         17                        0.7663          12 

19 Upper Moreland         1.0000           1                        1.0000            1 

20 Upper Southampton   0.9588           7                        0.9883            7  

21 Warminster   0.8764          14                       0.6142          16 

22 West Norriton   0.7905          22                       0.3922          22 

23 Whitpain   0.8082          19                       1.0000            1 

 

V. CONCLUSION 

This work considers measuring the relative efficiency of 

non-homogeneous DMUs with imprecise inputs, outputs, and 

external environmental factors. A two-stage analysis which 

incorporates the imprecise environmental factors into the 

fuzzy DEA model for measuring the relative efficiencies of 

non-homogeneous DMUs is proposed. To adjust the inputs 

and outputs of non-homogeneous DMUs, the least absolute 

deviation regression technique is employed to account for 

variations in the fuzzy causes of non-homogeneity. DEA with 

fuzzy residual errors is then performed to construct a scalar 

measure of efficiency for all DMUs. It is shown that if the 

fuzzy regression is a perfect fit, then the DEA with fuzzy 

residual errors places all DMUs on the efficiency frontier. An 
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example on the assessment of the performance of 

municipalities’ solid waste recycling and disposal channels is 

included. Our results show that these imprecise 

environmental factors do influence the efficiency scores and 

rankings of each municipality. This confirms our earlier 

statement that the efficiency scores generated by DEA may 

not reflect true managerial and operational efficiency when 

DMUs are not operated under similar conditions. 
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