


Abstract—Data flow analysis (DFA) technique is used to

analyze program into data variables and identify data flow

operation on these variables. This basic information can be used

to identify data dependencies, test data, program execution

paths and hence it is helpful in the testing process to verify

expected behavior of the system. In terms of executable UML,

the models are based on action languages which internally

consist of variables and specify data flow operation on these

variables. Therefore, DFA of action languages is essential to

analyze UML models in term of data flow and use the

information to verify formal correctness (expected behavior) of

the system. In our proposed approach, we are using action

language for fUML (ALF) to design and analyze executable

UML model. Analytical results show that DFA of executable

models provides the precise execution flow of variables which

are used to identify data dependencies and verification of

system expected behavior from its abstract model.

Index Terms—DFA, UML, testing, executable UML, ALF.

I. INTRODUCTION

The model can formally describe a particular aspect of the

system by following system’s specification. It can present an

abstract view of the system by graphical notations and

complex operations by using natural or action language

specification [1]. In this way model can help to represent and

analyze that particular aspect of system to study feasibility of

requirements, ambiguities in specifications and to gain

significant knowledge about the system to be developed. An

additional benefit of the model includes light weight or

simple representation of a system which enables a modeler to

capture knowledge about a system without indulging into

code complexity.

Executable modeling is ability of model to be executed on

the bases of execution semantics. UML superstructure [2]

provides the precise action semantics and there are many

action languages that are based on these action semantics

such as ALF [1], java like action language (JAL) [3],

Kennedy-Carter’s action specific language (ASL) [4] etc.

The use of these action languages can make an existing UML

model to act as an executable entity and can be used as a

prototype for the system to be developed. Among existing

action languages, ALF is object management group (OMG)

specified language for modeling executable systems. It

The manuscript received June 15, 2013; revised August 17, 2013. This

work is supported by University Institute of Information Technology, PMAS

Arid Agriculture University Rawalpindi.

S. Obaid is with ARID Agriculture University, Rawalpindi (e-mail:

samir_obaid@yahoo.com).

S. Asghar is with University Institute of Information Technology,

PMAS-Arid Agriculture University, Rawalpindi (e-mail:

sohail.asghar@uaar.edu.pk).

M. Naeem is with Muhammad Ali Jinnah University, Islamabad (e-mail:

naeems.naeem@gmail.com).

consists of C or JAVA like syntax and provides the same way

to define classes, object and method call. In the domain of

executable UML models, actions can be specified in UML

state machine [5], [6] and activity diagram. In the context of a

state machine model, actions are written in the form of Entry,

Do and Exit by using concrete action language. The state

machine can be considered as flattened and actions are

specified within states of state-machine. On the other hand,

UML activity diagram can provide detailed descriptions of

particular state’s action or entire execution flow of the

system. In any case, an action itself consists of variables and

their values. Change in variable’s value or attribute might

affect the execution flow of the system and hence it can

trigger the particular behavior of the system. In order to

ensure accurate behavior of model, it is required that actions

should be considered as data operation and they must be

analyzed term of data flow [6].

Data flow analysis (DFA) technique is used to discover

useful properties such as variable’s value, point of

initialization, data dependency and reachable definition etc.

of variables within the program being analyzed. Data flow

analysis techniques are initially found useful for compiler

optimization [7] but it is also found to have effective uses in

software testing such as finding test paths, test data selection

[8] and anomalies detection e.g. Def-def, undefined-used

within the program. In discipline of software testing and

verification process, it is used to ensure soundness of

program by identifying flow paths, variables anomalies

which can be used to observe the program behavior when it

executes through particular path. Rapps [8] have made a first

attempt at bringing DFA technique for testing premises but

code based DFA technique cannot be applied to action

languages due to the abstract nature of actions. DFA of action

semantics [6] is found helpful in determining flow

information about action languages within the model. A

variable’s value can influence particular execution flow

within the program which consequently executes particular

behavior of the system. Thus DFA can play an import role to

ensure accurate behavior of the system during testing.

This paper addresses the issue of DFA of UML models

with the help of ALF. Studying existing DFA technique on

UML models, we observed that the abstract nature of UML

models hinders the ability of DFA technique in finding out

detailed data flow information from the model. The use of

action language to UML model can lower down the issue of

abstraction and in this way the resulting DFA of the model

can find out precise data flow information of the system. The

rest of this paper is organized as follows: Section II discusses

the existing literature on DFA of UML models: Section III

describes proposed approach: results and discussions are

mentioned in Section IV: Section V summarizes the work

done and future direction.

S. Obaid, S. Asghar, and M. Naeem

Data Flow Analysis of UML Models by ALF

International Journal of Trade, Economics and Finance, Vol. 5, No. 1, February 2014

12DOI: 10.7763/IJTEF.2014.V5.333

II. LITERATURE REVIEW

Data flow analysis (DFA) is used to utilize definition and

use of variables in program and to compute associations and

relations such as dependencies among data objects [9]. The

value of variable is responsible for program control flow and

hence it represents particular behavior of the system [6]. In

this way, system particular functionality can be depicted by

identifying data occupied by variable. Therefore, data flow

information must be considered when system is intended to

be tested or analyzed. In this section, we describe existing

approaches where DFA is used for program analysis and

different testing purposes.

Kim [10] presents test cases generation from UML state

diagram. The concurrent and hierarchical structure of model

is flattened and state machine is transformed into

intermediate models called extended finite state machine

(EFSM). EFSM is then used to generate flow graph and test

cases are generated on bases of data flow information of

variables. In their technique, they describe how conventional

DFA techniques can be used to generate test cases from UML

state-machine diagram. Furthermore, they also describe

definition-use associations of variable that either occurs due

to hierarchical or concurrent structure of state machine

model. Although they use to identify definition-use operation

and definition-use (DU) pairs of variables by applying DFA

on flattened state machine model, but the use of

un-interpreted/natural language expressions to describe

behavior of system can hinder the ability of DFA in finding

detailed data flow information from model. Since natural

language expressions are not based on formal semantics or

grammar rules and therefore it is not possible to parse and

tokenize these expressions into atomic expressions or

variables.

Liuying and Zhichang [11] propose DFA of UML

state-chart diagram. Like Kim [10] they use to flatten the

hierarchical and concurrent structure of state machine to

simplify the model. The sub states in existing state-chart

model are specified as atomic states and methods are defined

to select test paths from whole state machine including

hierarchical execution region. The proposed approach is

beneficial in generating reduced test suites from UML state

machine model and they meet the objective by eliminating

test paths if they are found as prefix of some other test paths.

Hong et al. [12] described test sequence selection method

by applying DFA technique on state-chart. Like DFA on

UML state machine [10], they transform state-chart to EFSM

model which contains events, guards, actions and all possible

runs (test paths) of state-chart. Actions are described at nodes

and transition edges. Conventional DFA technique is applied

on state machine by identifying predicate use (p-use),

computational use (c-use) and definition points of variables

in EFSM. Concurrent and hierarchical structure of state

machine is flattened and test paths are generated from

resulting flow graph by EFSM. Hong et al. [12] transform

state machine model into flow graph and applies DFA on

model. The benefit of flow graph is its ability to occupy

variable and data information whether they exist on nodes or

transition edges. Although the flow graph is used to occupy

expressions that appears on transition edges and nodes but

author does not describe parsing of these expressions into

data variables in order to identify definition or use operation

on these variable. UML consist of set of events and actions

such as callEvent, createObjectAction, callBehaviorAction

etc. [2] which need to be identified and associated with data

variables, but the use of un-interpreted or natural language

expressions can become hurdle to identify this information

from model. Therefore, a formal semantic or grammar based

language is required [13] which can precisely describe

actions execution within model and it can also be parsed into

variables with help of language parser.

Lnous and Honiden [14] propose components based DFA

by using OCL expressions. The objective is to extract data

flow information among different classes and to flow

dependencies that occurs due to procedural calls. In order to

meet the objective, they use OCL expressions to describe

variables, constraints (in form of pre-conditions) and

operation execution. They translate OCL post condition into

set of operations in order to describe data variables and their

associated actions.

Cavarra [15] proposes DFA of abstract state machine

model. In their approach, they keep in consideration the

effect of parallel execution procedures on global variables.

Cavarra [15] describes the fact that program control flow

path is not sufficient if there are parallel paths and each of

them can modify the variable value. Cavarra [15] introduces

the concept of multi-agent (independent execution regions)

and elaborate data flow information from multi-agent

abstract state machine model but does not specify specific

language such as OCL or action languages to support their

methodology by automated tool.

Briand [5] performs DFA on UML state chart and

describes the effectiveness of DFA technique in MBT. In

their approach, they transform state machine to event action

flow graph (EAFG) which is a directed graph where nodes

represent post condition of actions and edges represent

guards and precondition for successor nodes. EAFG is

augmented with object constraint language (OCL)

expressions. DFA is performed on data variables that appear

in OCL expressions. Definition clear path and definition use

path are identified on bases of definition use operation on

variables and builds transition tree to specify execution of

operations. In their proposed approach, they make use of

DFA information to identify flow paths from state machine

model through EAFG. The flow paths which consist of large

number of definition use pair of variable is considered more

effective in fault detection because such paths have potential

to accommodate large number of anomalies. Briand [5] also

defines set of rules which are used to identify definition-use

operations on variables and collection operations. The

collection operations are commonly used by OCL and UML

based action languages and therefore, the defined rules are

equally applicable on both of them. Since OCL itself is a

declarative language and it can’t be used to define

computation logic and algorithmic details in model [13].

Waheed [6] uses action specific language (ALS) and

analyze data flow information from UML state machine

model. ASL is based on UML action semantics and its

augmentation with UML model can become a better

technique to address following important issues of existing

approaches.

International Journal of Trade, Economics and Finance, Vol. 5, No. 1, February 2014

13

A. Use of Informal/un-Interpreted Language Expressions

Waheed [6] describes internal details of state machine with

ASL. Unlike informal language expressions, ASL is based on

formal semantics and grammar rules and therefore its

expressions can be easily parsed into atomic expressions or

data variables.

B. Precise Action Specification

Action language such as ASL, ALF etc is based on UML

action semantics and they can precisely describe executable

behavior of model. These action languages can also be used

to specify algorithms and add computational details which

are required for execution.

Like existing approaches [6], [7], [9], Waheed [6] also

flattens the hierarchical and concurrent structure of UML

state machine. Fig. 6 refers case study from Waheed [6]

approach where states represents actions execution and

transition edges represent communication among states.

From Fig. 6, we can observe that ASL expressions are used to

describe action/operation within state such as “status=idel”

in state 1.1. Similarly OCL expressions are used to describe

expressions on transition edges such as “call(cf) (cf<ef)” on

transition edge 1-6”. ASL parser and mapping rules are used

in order to tokenize expressions into variables and identify

definition-use operations on these variables. But the use of

parser and mapping rules can only identify definition-use

operation on those variables that exist inside a state(s)

whereas it completely neglect definition-use operation on

variables that exist on transition edges. Consequently, the

resulting DFA of model will not have data flow information

for all those variables that are defined within state but used on

transition edges e.g. cf and ef are defined in state 1 and used

on transition edge 1-9 but this information is not acquired by

Waheed [6] approach. The situation become more critical if

use of variable occurs only on transition edge such as

“direction” defined in state 6.4, 9.4 and used on edge 7-13,

10-13. Hence variable “direction” will always be considered

as unused although it is used on two transition edges (7-13,

10-13).

Above discussion lead us to the conclusion that use of

formal languages such as OCL or action languages can

become better approach of DFA of UML models. Since OCL

is descriptive language and lack execution ability therefore

action languages such as ASL, ALF, and SMALL etc can

become better choice for modeling and analysis. Existing

approaches [6] uses UML state machine to identify variables’

flow information but neglect identification of those variables

that appears on transition edges or predicates (p-use).

Therefore, it is necessary to propose a technique which could

acquire complete coverage of code and data flow operations

on variables in order to ensure the correctness of system.

III. PROPOSED APPROACH

In this section we describe our approach towards DFA of

UML models by using semantic based action language ALF.

We have developed state-based ALF model analysis tool

(SAMAT) for analysis of (ALF based) executable UML

models. Fig. 1 describes the architecture of SAMAT where

ellipses represent activities and boxes shows input to or

output from activities. Sequence of steps and process flow of

SAMAT is described in following subsection.

Fig. 1. Process flow of SAMAT.

A. ALF Parser

SAMAT takes ALF model as an input and tokenize

expressions by ALF Parser. The parser identifies atomic

expressions from statements and specifies UML action

associated with these expressions.

ALF itself does not contain concept like atomic

expression. ALF set of expressions includes primary,

increment and decrement, unary, binary, conditional

assignment expression. In our case we use the term atomic

expression to classify all those expressions that represent

individual elements such as variables, class object, tuples and

that can be directly mapped to UML actions.

B. Def-Use Operations

ALF parser provides atomic expressions/variables along

with action associated with these expressions. Waheed [6]

categorizes UML actions into define and use classes and we

are also using this classification in form of action-operation

mapping in SAMAT to identify data flow operation on

variables. Table I describes some UML action along with

data flow operations. Classification of actions into

definition-use can consequently determine DU operations on

associated data variables.

TABLE I: ACTION-OPERATION MAPPING

Action Operation

Add structural feature value action Def

Create object action Def

Read structural feature action Def

C. Definition-Use Pairs

DU pairs of variable can be identified by finding use and

then corresponding definition(s) of used variable. Fig. 2

describes an algorithm to find out DU pairs of variables from

a program being analyzed. After identifying data flow

operation on variables, the resulting model appears in form of

acyclic flow graph (AFG) which is taken as an input and for

each used variable the graph is traversed to find out definition

in all possible parents nodes of variable. There can be a single

event or multiple non-deterministic (external/internal) events

International Journal of Trade, Economics and Finance, Vol. 5, No. 1, February 2014

14

that can cause definition-use operation on variables. In our

proposed approach, we use to handle these cases by graph

traversing algorithm and feasible path matrix (FPM).

Fig. 2. Algorithm to identify DU Pairs.

IV. CASE STUDY AND RESULTS

We have discussed in Section I that ALF concrete syntax

resembles with C of Java and provides same way to define

classes, object and method calls. In this way ALF act as a

bridge between abstract UML models and complex

programming languages and hence its DFA can provide

necessary data flow information which is abstract but precise

enough to verify correctness of the system. Following section

refers elevator control system (ECS) from Waheed [6]. Fig. 6

depicts the state machine model of ECS where we apply DFA

by augmenting state machine with ALF and compare results

on the bases of DFA information.

In this case study our objective is to describe the

advantages of DFA in finding out the formal correctness

(expected behavior) of a system from its model. We are

mapping flattened state machine of ECS to ALF and resulting

ALF model is parsed by the ALF parser to find out data

variables and DU pairs. As mentioned in previous sections

that feasible path matrix can be used to find out data

dependencies if state consists of un-deterministic events and

each of them can trigger the variable’s value. Keeping in

view the fact, we are also using feasible path matrix [6] to

find out data dependencies and DU pairs of variables.

A. Def-Use Operations on Variables

Active Class ECS

{

 Public Floor cf;

 Public Floor ef;

 Public Floor targetFloor;

 Public String status, direction;

}

do

{

accept(callFloor:Floor)

cf=callFloor;

if(cf<ef)

{

startMovingDown();

 }

}

Activity startMovingDown()

{

 1. Status=”moving”

 2. direction=”down”

 3. p.enqueue(cf)

 4. targetFloor=p.front()

}

Fig. 3. ALF active class for start moving down state.

We are taking flattened state machine model of ECS and

transform it into ALF by specifying mapping rules. We are

performing this transformation by mapping state into ALF

activity class and incoming transition into corresponding

event and predicate in ALF active class. Fig. 3 depicts an

example of mapping “StartMovingDown” state of ECS to

ALF activity class. From Fig. 3 it can be observed that by

mapping “StartMovingDown” state to ALF we have also

acquired variables that exist on the incoming transition edge

of the state. Now the resulting ALF model can be parsed by

the ALF parser to find out variables and identify DU

operations on these variables.

The p-use in Table II describes use operation on variable

that appear on state transition edge or active class predicate.

In other words, it shows that use operation is performed on

“ef” at incoming transition edge of startMovingDown state.

By using above mentioned approach, we have found existing

(transition and state) variables from every state of ECS and

identified data flow (definition, p-use, c-use) operations on

them.

TABLE II: DEF-USE OPERATION ON VARIABLES

Variable State Operation

cf --- def

ef --- p-use

ef --- p-use

status startMovingDown def

direction startMovingDown def

cf startMovingDown c-use

targetFloor startMovingDown def

B. DU Pairs

Fig. 4. Feasible path matrix of ECS from waheed [6].

We use to find DU pairs of each variable within state by

finding variable’s use point and then corresponding

definition point of that variable. In order to find intrastate DU

pairs, we are consulting feasible path matrix (FPM) of giving

state machine model. The FPM is described in Fig. 4 where it

marks the entry between two states as 1 if there is a direct or

indirect connection between two states. From each state, we

acquire defined variables and then look for their use points in

states that are marked feasible by FPM. The process is

continued until we acquire DU pairs of all defined variables

within the model. Table III presents the results of interstate

function find DU Pairs(list)

{

for (i=0 to list. size ())

{

used Variables=list. Get Used Variables ()

for Each(use Var in used Variables)

{

find Definition Point (use Var)

}

If (list. subList!=null)

{

find DU Pairs (list. subList)

}

}

}

International Journal of Trade, Economics and Finance, Vol. 5, No. 1, February 2014

15

and intrastate DFA of ECS. The distinction of our results is

the identification of definition and p-use of variables such as

“direction” and “targetFloor” etc. and these distinct variable

pairs are availed by identifying variables on transition edges

of a state machine model.

Table III describes data flow information from ECS that

exists in states and state transitions. Precise DFA information

also includes those variables that exist on states and state

transition such as “direction” and “target floor” etc. On the

other hand, the resulting variables also include invalid DU

pairs such as “targetfloor” defined in state 4 and 5 and used

on transition edge 3-1, 7-13. These DU pairs can never be

availed by test paths because their definition is killed by state

3. The use of adjacency matrix can avoid identification of

such DU pairs. Another kind of invalid DU pairs includes a

definition of “targetFloor” at state 2 and 6 and their use of

edge 12-11 and 12-8. Such invalid DU pairs can appear even

by using adjacency matrix and there can be (invalid) test path

that avail these variables.

TABLE III: DU PAIRS OF VARIABLES

Variable State Line Use State Line

cf 1 3 2 2

cf 1 3 5 2

cf 1 3 6 3

direction 6 4 Edge 7-13

direction 9 4 Edge 10-13

floorNo 1 3 7 1

floorNo 7 1 10 1

targetFloor 6 5 Edge 7-13

targetFloor 6 5 Edge 2-11

In subsequent portion of this chapter, we further extends

experimental results of ECS to identify data flow information

and their benefit in formal accuracy of system through

testing.

C. Adding Exceptional State to ECS

TABLE IV: MEASURING ACCURACY BY INITIAL HYPOTHESIS

Variables Identified

variables

by

Waheed

[6]

Identified

variables

by DFA of

ALF

Model

Adding

MailFunctioned

State

Adding

Emergency

DoorOpen

state

Declared

variables

8 8 8 9

Definition

operation

22 22 23 25

Def: State

Use: State

17 17 17 18

Def: State

Use: edge

N/A 37 51 55

 0 16 20 25

We have added some exceptional states in ECS which

includes “Malfunctioned” and “Emergency Door Open”. The

purpose of these states is to describe the behavior of the

system against the unacceptable system event. Table IV

describes the resulting data flow information after adding

exceptional states to models.

We have compared our result with Waheed [6] on the

bases of DFA results of Table IV. From comparison graph we

can note that both approaches cover the same number of

definitions and def: State & Use: State operation. Fig. 5 also

shows that Waheed [6] neglect variables information that

appears on state transition edges but on the same hand they

do not have invalid DU pairs in their analysis model.

The latter two bars in graph describe analysis results by

adding new states to the system. We use the compute the

results of additional states to find out impact of each state in

improving accuracy and overall cost (unreachable DU pairs)

by analysis of model.

Fig. 5. Comparison graph by DFA of ALF.

D. Measuring Cost and Accuracy

By adding new states to ECS, we acquired additional data

flow operations from both computer and predicate part of the

scheme. Furthermore, the process also identified untraceable

DU pairs from ECS which are called invalid DU pairs and

describes as cost in Table V.

TABLE V: AVERAGE INCREASE IN COST AND DU PAIRS

variables DU

operations on

state

machine

Adding

MailFuncti

oned state

Adding

Emergency

DoorOpen

state

Average

c-use 17 0.00 5.88 2.94

p-use 37 37.84 48.65 43.24

cost 16 25 56.25 40.63

E. Average Improvement on Bases of Hypothesis Value

DFA is helpful in verifying accuracy [10] through the

selection of improved test paths from the model. By testing

system on the basis of initial data flow information, we

assumed that there is a 40 % probability of system’s accurate

functionality whereas 60 % chances exist for system failure.

By adding exceptional states to the system the probability of

International Journal of Trade, Economics and Finance, Vol. 5, No. 1, February 2014

16

successful execution increased by (55.14 - 40) 15.14% and

then 30.07% which adds to average improvement of 22.60 %.

Table VI describes a gradual and average improvement after

initial assumption value based on hypothesis.

Fig. 6. Impact on accuracy by adding new states.

TABLE VI: MEASURING ACCURACY BY INITIAL HYPOTHESIS

Variables assumption

value based

on hypothesis

Adding Mail

Functioned

State

Adding

Emergency

Door Open

state

Probability 40 55.14 70.07

Difference 15.14 30.07

Average

improvement

22.60

We can plot the results of table VI with the help of the

graph. From Fig. 7, it can be observed that by taking initial

hypothesis of 40% (number 40 in a vertical column) at initial

state the accuracy increased to 55 and then 70 percent by the

addition of two new states to the system. It can be observed

that the accuracy line deviates toward the y-axis after adding

second state which shows a higher contribution of 2nd state

in an average improvement of system behavior.

Fig. 7. Impact on accuracy by adding new states

F. Observation

In the above case study we have used DFA information to

International Journal of Trade, Economics and Finance, Vol. 5, No. 1, February 2014

17

determine the impact of each exceptional state in improving

accuracy or protecting system against failure. We also

observed some additional cost of DFA that exist in form of

invalid or unreachable DU pairs of variables and there also

exist invalid test paths that occupy these DU pairs. Yet the

user input data is the only way to identify these invalid test

paths and eliminate them from test suite. By applying DFA

on different case studies we observed a weak relation among

the cases which means that cost and accuracy varies from one

particular situation to another which depends upon the

behavior of state, state execution and evaluation of variables

within model being analyzed.

V. CONCLUSION AND FUTURE WORK

In this research we have used executable language ALF for

DFA of UML models. We also describe the complete DFA

process by SAMAT and identification of variable flow

information from both hierarchical and flattened UML

models. From our experimental work, we also described how

DFA technique is helpful in identifying impacts of system

states in improving the accuracy of the system. We have

found an ALF suitable language for modeling and analysis

because its concrete syntax can be mapped to UML modeling

notations and programming language constructs such as

class, object and events etc. From our experimental work, we

have observed that mapping UML state machine to ALF has

enabled us to find precise data flow information from the

model. Since DFA has numerous application and we have

just used it to find a DU pair of variables. We have aimed

some feasible future work in domain of executable models.

Our instant future task can be identified of refined test cases

by DFA information. Similarly DFA information can be used

in fault seeding and thus it can be useful for system

verification by mutation operation.

REFERENCES

[1] Action Language for Foundational UML (ALF): Beta 1. [Online].

Available: http://www.omg.org

[2] Unified Modeling Language: Superstructure. Version 2.3. (2007).

Object Management Group (OMG) document ptc/06-04-02. [Online].

Available: http://www.omg.org

[3] T. D. Trong, S. Ghosh, and D. France “Java like action language

(JAL),” Specification 1.1-Beta version. CS Technical Report 06-102,

Department of Computer Science, Colorado State University, Fort

Collins, USA.

[4] K. Carter. Abstract Solutions. [Online]. Available: http://www.kc.com

[5] L. C. Briand, Y. Labiche, and Q. Lin, “Improving state chart testing

criteria using data flow information,” in Proc. 16th IEEE International

Symposium on Software Reliability Engineering, 2005, pp. 95-104.

[6] T. Waheed, Z. Z. Iqbal, and Z. I. Malik, “Data flow analysis of UML

action semantics for executable models,” in Model Driven Architecture

- Foundations and Applications, Volume 5095 of Lecture Notes in

Computer Science, I. Schieferdecker and A. Hartman, Eds. Springer

Berlin / Heidelberg, 2008, pp. 79–93..

[7] Y. Bertot, B. Gregoire, and X. Leroy, “A structured approach to

proving compiler optimizations based on dataflow analysis,” in Proc.

of TYPES’04, Springer LNCS, 2006, vol. 3839, pp. 66-81

[8] S. Rapps and E. J. Weyuker, “Data flow analysis techniques for test

data selection,” in Proc. 6th International Conf. on Software

Engineering, Tokyo, Japan, 1982, pp. 367-374.

[9] L. Moonen, “A generic architecture for data flow analysis to support

reverse engineering,” in Proc. Second International Workshop on the

Theory and Practice of Algebraic Pecifications, Electronic Workshops

in Computing, Amsterdam, Springer, Heidelberg, 1997.

[10] Y. G. Kim, H. S. Hong, S. M. Cho, D. H. Bae, and S. D. Cha, “Test case

generation from UML state diagrams,” in IEEE Proc.-Software, vol.

146, 1999, pp. 187-192.

[11] L. Liuying and Q. ZhiChang, “Test selection from UML statecharts,”

Technology of Object-Oriented Languages and Systems, 1999, pp.

273-279.

[12] S. H. Hong, Y. G. Kim, S. D. Cha, D. H. Bae, and H. Ural, “A test

sequence selection method for state charts,” Journal of Software

Testing, Verification and Reliabilit, vol. 10, pp. 203–227, 2000.

[13] S. J. Mellor, S. Tockey, R. Arthaud, and P. LeBlanc,

“Software-platform-independent precise action specifications for

UML,” in Proc. Unified Modeling Language, UML’98—Beyond the

Notation. First International Workshop, J. Bézivin and P.-A. Muller,

Eds. Mulhouse, France. LNCS, vol. 1618, 1998, pp. 281–286.

[14] A. Cavarra, “Inter-agent data flow analysis of business components,” in

Proc. Australian Software Engineering Conference, 2009, pp.

237-245.

[15] T. Inous and S. Honiden, “A method for data flow analysis of business

components,” in Proc. 14th International ACM Sigsoft Symposium on

Component Based Software Engineering, ACM New York, NY, USA,

2011, pp. 51-60.

S. Obaid is a MS student at university of Arid

Agriculture, Rawalpindi, Pakistan. He got his BS degree

in software engineering from International Islamic

University, Islamabad, Pakistan in 2010. His major field

of studies includes modeling, testing and quality

assurance.

He is working as a quality assurance engineer at

Alachisoft Pakistan from 2012. The major

responsibilities are testing NCache and JvCache application on Linux and

Windows platform where the tasks includes test case specification, sanity

design and execution, benchmarking, stress and load testing. His recent work

in Alachisoft is Network Virtualization by Hyper-V and testing distributed

cache application on network.

S. Asghar is an associate professor/director at

University Institute of Information Technology,

PMAS-Arid Agriculture University, Rawalpindi,

Pakistan. He graduated with honors in Computer

Science from the University of Wales, United Kingdom

in 1994. He obtained his Ph.D. degree from Monash

University, Melbourne, Australia in 2006. His major

fields of interest include Data Mining and Business

Intelligence, Decision Support Systems, Model Management and Disaster

Management Systems.

He was serving as an associate professor of Computer Science,

Department of Computer Sciences, Faculty of Engineering and Applied

Sciences, Mohammad Ali Jinnah University, Islamabad, Pakistan. He also

worked as an assistant professor of Computer Sciences and head of R&D at

Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad,

Pakistan. Previously, he was a research associate and assistant lecturer in

Clayton School of Information Technology, Faculty of Information

Technology at Monash University, Melbourne, Australia. From 1994 to

2002, he worked as a senior software engineer in a software company in

Islamabad.

 Dr. Asghar is a member of the Australian Computer Society (ACS), IEEE

and also a higher education commission approved supervisor. He is in the

Editorial Team of well reputed Scientific Journals. He has also served as a

program committee member of many International Conferences.

M. Naeem is a Ph.D. scholar at department of computer science, Mohammad

Ali Jinnah University Islamabad Pakistan. His research area includes

machine learning, software engineering, semantic computing, text retrieval,

graph mining, classification and data mining.

International Journal of Trade, Economics and Finance, Vol. 5, No. 1, February 2014

18

